Efficient design space exploration for spar Floating Offshore Wind Turbines: the trilemma of the ultimate, fatigue, and serviceability limit states (2024)

Abstract

Floating Offshore Wind Turbines (FOWT) can harness the abundant wind resource in deep-water offshore conditions. However, they face challenges in harsh, unsheltered marine environments. The mean hydro- and aerodynamic loads coupled with fluctuating stochastic wind and wave loads contribute to varied failure mechanisms. Therefore, the serviceability, ultimate, and fatigue limit states are vital in ensuring the safety and reliability of FOWT. This paper investigates how specific loads and states drive the design of a spar-type support structure, utilising a computationally efficient frequency-domain model. This approach combines quasi-static aerodynamic and mooring models with a potential-theory-based radiation-diffraction solver. The serviceability criteria concern the platform and tower top displacements and accelerations. The ultimate and fatigue limit states are assessed for the tower base, the waterline section, and the mooring lines, including the effects of yielding under the bending moment and compressive axial load, column buckling, and tension-tension effects in the mooring lines. The full factorial design of experiments is employed to investigate the non-trivial relationships between the limit states and the various features of the support structure. The results demonstrate that the design of the spar platform above the waterline is mainly driven by fatigue, which results from significant dynamic tilt and increased stress concentration at the platform-tower intersection. On the other hand, the catenary mooring lines’ design is mainly driven by the requirements of maximum offset (serviceability limit state) and fatigue.

OriginalsprogEngelsk
BogserieJournal of Physics: Conference Series
ISSN1742-6596
DOI
StatusUdgivet - 1 jun. 2024

Fingeraftryk

Dyk ned i forskningsemnerne om 'Efficient design space exploration for spar Floating Offshore Wind Turbines: the trilemma of the ultimate, fatigue, and serviceability limit states'. Sammen danner de et unikt fingeraftryk.

Se fuldt fingeraftryk

Citationsformater

  • APA
  • Author
  • BIBTEX
  • Harvard
  • Standard
  • RIS
  • Vancouver

Patryniak, K., Yeter, B., Collu, M., & Coraddu, A. (2024). Efficient design space exploration for spar Floating Offshore Wind Turbines: the trilemma of the ultimate, fatigue, and serviceability limit states. Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/2767/6/062014

Patryniak, Katarzyna ; Yeter, Baran ; Collu, Maurizio et al. / Efficient design space exploration for spar Floating Offshore Wind Turbines: the trilemma of the ultimate, fatigue, and serviceability limit states. I: Journal of Physics: Conference Series. 2024.

@inproceedings{057cedafa1944b1b812ab3fd7686ae93,

title = "Efficient design space exploration for spar Floating Offshore Wind Turbines: the trilemma of the ultimate, fatigue, and serviceability limit states",

abstract = "Floating Offshore Wind Turbines (FOWT) can harness the abundant wind resource in deep-water offshore conditions. However, they face challenges in harsh, unsheltered marine environments. The mean hydro- and aerodynamic loads coupled with fluctuating stochastic wind and wave loads contribute to varied failure mechanisms. Therefore, the serviceability, ultimate, and fatigue limit states are vital in ensuring the safety and reliability of FOWT. This paper investigates how specific loads and states drive the design of a spar-type support structure, utilising a computationally efficient frequency-domain model. This approach combines quasi-static aerodynamic and mooring models with a potential-theory-based radiation-diffraction solver. The serviceability criteria concern the platform and tower top displacements and accelerations. The ultimate and fatigue limit states are assessed for the tower base, the waterline section, and the mooring lines, including the effects of yielding under the bending moment and compressive axial load, column buckling, and tension-tension effects in the mooring lines. The full factorial design of experiments is employed to investigate the non-trivial relationships between the limit states and the various features of the support structure. The results demonstrate that the design of the spar platform above the waterline is mainly driven by fatigue, which results from significant dynamic tilt and increased stress concentration at the platform-tower intersection. On the other hand, the catenary mooring lines{\textquoteright} design is mainly driven by the requirements of maximum offset (serviceability limit state) and fatigue.",

author = "Katarzyna Patryniak and Baran Yeter and Maurizio Collu and Andrea Coraddu",

year = "2024",

month = jun,

day = "1",

doi = "10.1088/1742-6596/2767/6/062014",

language = "English",

journal = "Journal of Physics: Conference Series",

issn = "1742-6596",

publisher = "IOP Publishing",

}

Patryniak, K, Yeter, B, Collu, M & Coraddu, A 2024, 'Efficient design space exploration for spar Floating Offshore Wind Turbines: the trilemma of the ultimate, fatigue, and serviceability limit states', Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/2767/6/062014

Efficient design space exploration for spar Floating Offshore Wind Turbines: the trilemma of the ultimate, fatigue, and serviceability limit states. / Patryniak, Katarzyna; Yeter, Baran; Collu, Maurizio et al.
I: Journal of Physics: Conference Series, 01.06.2024.

Publikation: Bidrag til tidsskriftKonferenceartikel i tidsskriftForskningpeer review

TY - GEN

T1 - Efficient design space exploration for spar Floating Offshore Wind Turbines: the trilemma of the ultimate, fatigue, and serviceability limit states

AU - Patryniak, Katarzyna

AU - Yeter, Baran

AU - Collu, Maurizio

AU - Coraddu, Andrea

PY - 2024/6/1

Y1 - 2024/6/1

N2 - Floating Offshore Wind Turbines (FOWT) can harness the abundant wind resource in deep-water offshore conditions. However, they face challenges in harsh, unsheltered marine environments. The mean hydro- and aerodynamic loads coupled with fluctuating stochastic wind and wave loads contribute to varied failure mechanisms. Therefore, the serviceability, ultimate, and fatigue limit states are vital in ensuring the safety and reliability of FOWT. This paper investigates how specific loads and states drive the design of a spar-type support structure, utilising a computationally efficient frequency-domain model. This approach combines quasi-static aerodynamic and mooring models with a potential-theory-based radiation-diffraction solver. The serviceability criteria concern the platform and tower top displacements and accelerations. The ultimate and fatigue limit states are assessed for the tower base, the waterline section, and the mooring lines, including the effects of yielding under the bending moment and compressive axial load, column buckling, and tension-tension effects in the mooring lines. The full factorial design of experiments is employed to investigate the non-trivial relationships between the limit states and the various features of the support structure. The results demonstrate that the design of the spar platform above the waterline is mainly driven by fatigue, which results from significant dynamic tilt and increased stress concentration at the platform-tower intersection. On the other hand, the catenary mooring lines’ design is mainly driven by the requirements of maximum offset (serviceability limit state) and fatigue.

AB - Floating Offshore Wind Turbines (FOWT) can harness the abundant wind resource in deep-water offshore conditions. However, they face challenges in harsh, unsheltered marine environments. The mean hydro- and aerodynamic loads coupled with fluctuating stochastic wind and wave loads contribute to varied failure mechanisms. Therefore, the serviceability, ultimate, and fatigue limit states are vital in ensuring the safety and reliability of FOWT. This paper investigates how specific loads and states drive the design of a spar-type support structure, utilising a computationally efficient frequency-domain model. This approach combines quasi-static aerodynamic and mooring models with a potential-theory-based radiation-diffraction solver. The serviceability criteria concern the platform and tower top displacements and accelerations. The ultimate and fatigue limit states are assessed for the tower base, the waterline section, and the mooring lines, including the effects of yielding under the bending moment and compressive axial load, column buckling, and tension-tension effects in the mooring lines. The full factorial design of experiments is employed to investigate the non-trivial relationships between the limit states and the various features of the support structure. The results demonstrate that the design of the spar platform above the waterline is mainly driven by fatigue, which results from significant dynamic tilt and increased stress concentration at the platform-tower intersection. On the other hand, the catenary mooring lines’ design is mainly driven by the requirements of maximum offset (serviceability limit state) and fatigue.

UR - http://dx.doi.org/10.1088/1742-6596/2767/6/062014

U2 - 10.1088/1742-6596/2767/6/062014

DO - 10.1088/1742-6596/2767/6/062014

M3 - Conference article in Journal

SN - 1742-6596

JO - Journal of Physics: Conference Series

JF - Journal of Physics: Conference Series

ER -

Patryniak K, Yeter B, Collu M, Coraddu A. Efficient design space exploration for spar Floating Offshore Wind Turbines: the trilemma of the ultimate, fatigue, and serviceability limit states. Journal of Physics: Conference Series. 2024 jun. 1. doi: 10.1088/1742-6596/2767/6/062014

Efficient design space exploration for spar Floating Offshore Wind Turbines: the trilemma of the ultimate, fatigue, and serviceability limit states (2024)
Top Articles
Latest Posts
Article information

Author: Roderick King

Last Updated:

Views: 5691

Rating: 4 / 5 (71 voted)

Reviews: 86% of readers found this page helpful

Author information

Name: Roderick King

Birthday: 1997-10-09

Address: 3782 Madge Knoll, East Dudley, MA 63913

Phone: +2521695290067

Job: Customer Sales Coordinator

Hobby: Gunsmithing, Embroidery, Parkour, Kitesurfing, Rock climbing, Sand art, Beekeeping

Introduction: My name is Roderick King, I am a cute, splendid, excited, perfect, gentle, funny, vivacious person who loves writing and wants to share my knowledge and understanding with you.