Characterizing Jordan embeddings between block upper-triangular subalgebras via preserving properties (2024)

Ilja Gogić, Tatjana Petek, Mateo TomaševićI.Gogić, Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička 30, 10000 Zagreb, Croatiailja@math.hrT.Petek, Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška cesta 46, SI-2000 Maribor, Slovenia;
Institute of Mathematics, Physics and Mechanics, Jadranska ulica 19, SI-1000 Ljubljana, Slovenia
tatjana.petek@um.siM.Tomašević, Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička 30, 10000 Zagreb, Croatiamateo.tomasevic@math.hr

(Date: June 14, 2024)

Abstract.

We consider arbitrary block upper-triangular subalgebras 𝒜Mn𝒜subscript𝑀𝑛\mathcal{A}\subseteq M_{n}caligraphic_A ⊆ italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT (i.e.subalgebras of Mnsubscript𝑀𝑛M_{n}italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT which contain the algebra of upper-triangular matrices) and their Jordan embeddings. We first describe Jordan embeddings ϕ:𝒜Mn:italic-ϕ𝒜subscript𝑀𝑛\phi:\mathcal{A}\to M_{n}italic_ϕ : caligraphic_A → italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT as maps of the form

ϕ(X)=TXT1orϕ(X)=TXtT1,formulae-sequenceitalic-ϕ𝑋𝑇𝑋superscript𝑇1oritalic-ϕ𝑋𝑇superscript𝑋𝑡superscript𝑇1\phi(X)=TXT^{-1}\qquad\mbox{or}\qquad\phi(X)=TX^{t}T^{-1},italic_ϕ ( italic_X ) = italic_T italic_X italic_T start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT or italic_ϕ ( italic_X ) = italic_T italic_X start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_T start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ,

where TMn𝑇subscript𝑀𝑛T\in M_{n}italic_T ∈ italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT is an invertible matrix, and then we obtain a simple criteria of when one block upper-triangular subalgebra Jordan-embeds into another (and in that case we describe the form of such embeddings). As a main result, we characterize Jordan embeddings ϕ:𝒜Mn:italic-ϕ𝒜subscript𝑀𝑛\phi:\mathcal{A}\to M_{n}italic_ϕ : caligraphic_A → italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT (when n3𝑛3n\geq 3italic_n ≥ 3)as continuous injective maps which preserve commutativity and spectrum. We show by counterexamples that all these assumptions are indispensable (unless 𝒜=Mn𝒜subscript𝑀𝑛\mathcal{A}=M_{n}caligraphic_A = italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT when injectivity is superfluous).

Key words and phrases:

Jordan hom*omorphisms, spectrum preserver, commutativity preserver, upper-triangular matrices, matrix algebras, block upper-triangular algebras

2020 Mathematics Subject Classification:

47B49, 15A27, 16S50, 16W20

1. Introduction

Jordan algebras were first introduced by Pascual Jordan in 1933 in the context of quantum mechanics [21]. The majority of the practically relevant Jordan algebras naturally arise as subalgebras of an associative algebra 𝒜𝒜\mathcal{A}caligraphic_A under a symmetric product given by

xy=xy+yx.𝑥𝑦𝑥𝑦𝑦𝑥x\circ y=xy+yx.italic_x ∘ italic_y = italic_x italic_y + italic_y italic_x .

This gave rise to the study of Jordan hom*omorphisms in the context of associative rings and algebras. Namely, recall that an additive (linear) map ϕ:𝒜:italic-ϕ𝒜\phi:\mathcal{A}\to\mathcal{B}italic_ϕ : caligraphic_A → caligraphic_B between rings (algebras) 𝒜𝒜\mathcal{A}caligraphic_A and \mathcal{B}caligraphic_B is a Jordan hom*omorphism if

ϕ(ab)=ϕ(a)ϕ(b),for alla,b𝒜.formulae-sequenceitalic-ϕ𝑎𝑏italic-ϕ𝑎italic-ϕ𝑏for all𝑎𝑏𝒜\phi(a\circ b)=\phi(a)\circ\phi(b),\qquad\text{ for all }a,b\in\mathcal{A}.italic_ϕ ( italic_a ∘ italic_b ) = italic_ϕ ( italic_a ) ∘ italic_ϕ ( italic_b ) , for all italic_a , italic_b ∈ caligraphic_A .

When the rings (algebras) are 2222-torsion-free, this is equivalent to

ϕ(a2)=ϕ(a)2,for alla𝒜.formulae-sequenceitalic-ϕsuperscript𝑎2italic-ϕsuperscript𝑎2for all𝑎𝒜\phi(a^{2})=\phi(a)^{2},\qquad\text{ for all }a\in\mathcal{A}.italic_ϕ ( italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) = italic_ϕ ( italic_a ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , for all italic_a ∈ caligraphic_A .

Clearly, multiplicative and antimultiplicative maps are immediate examples of such maps. One of the main problems in the context of Jordan hom*omorphisms is under which assumptions on rings (algebras) 𝒜𝒜\mathcal{A}caligraphic_A and \mathcal{B}caligraphic_B, usually without 2222-torsion, can we conclude that every Jordan hom*omorphism ϕ:𝒜:italic-ϕ𝒜\phi:\mathcal{A}\to\mathcal{B}italic_ϕ : caligraphic_A → caligraphic_B (possibly satisfying some extra conditions such as surjectivity) is either multiplicative or antimultiplicative. More generally, the question is whether one can express all such Jordan hom*omorphisms as a suitable combination of ring (algebra) hom*omorphisms and antihom*omorphisms. This question goes a long way back. Namely, in 1950 Jacobson and Rickart [20] proved that a Jordan hom*omorphism from an arbitrary ring into an integral domain is either a hom*omorphism or an antihom*omorphism. This paper is particularly relevant for our discussion as it also proves that a Jordan hom*omorphism from the ring of n×n𝑛𝑛n\times nitalic_n × italic_n matrices, n2𝑛2n\geq 2italic_n ≥ 2, over an arbitrary unital ring is the sum of a hom*omorphism and an antihom*omorphism. In the same vein, Herstein [17] concludes that a Jordan hom*omorphism onto a prime ring is either a hom*omorphism or an antihom*omorphism. The same result was later refined by Smiley [32].

Let Mnsubscript𝑀𝑛M_{n}italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT be the algebra of n×n𝑛𝑛n\times nitalic_n × italic_n matrices over the field of complex numbers. By combining the aforementioned result of Herstein with the well-known fact that all automorphisms of Mnsubscript𝑀𝑛M_{n}italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT are inner (for a short and elegant proof see [31]), one obtains that all nonzero Jordan endomorphisms ϕitalic-ϕ\phiitalic_ϕ of Mnsubscript𝑀𝑛M_{n}italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT are precisely maps of the form

(1.1)ϕ(X)=TXT1orϕ(X)=TXtT1formulae-sequenceitalic-ϕ𝑋𝑇𝑋superscript𝑇1oritalic-ϕ𝑋𝑇superscript𝑋𝑡superscript𝑇1\phi(X)=TXT^{-1}\qquad\text{or}\qquad\phi(X)=TX^{t}T^{-1}italic_ϕ ( italic_X ) = italic_T italic_X italic_T start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT or italic_ϕ ( italic_X ) = italic_T italic_X start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_T start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT

(globally) for some invertible matrix TMn𝑇subscript𝑀𝑛T\in M_{n}italic_T ∈ italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT.

There have been many attempts to characterize Jordan hom*omorphisms, particularly on matrix algebras, using preserver properties. These attempts date back at least to 1970 and Kaplansky’s famous problem [22] which asks under which conditions on unital (complex) Banach algebras A𝐴Aitalic_A and B𝐵Bitalic_B is a linear unital map ϕ:AB:italic-ϕ𝐴𝐵\phi:A\to Bitalic_ϕ : italic_A → italic_B which preserves invertibility necessarily a Jordan hom*omorphism. This problem received a lot of attention and progress was made in some special cases, but it is still widely open, even for Csuperscript𝐶C^{*}italic_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebras (see [7], page 270). For other interesting types of linear preserver problems resulting in more general kinds of maps, we refer to the survey paper [23] and references within. We would also like to distinguish the following nonlinear preserver problem which elegantly characterizes Jordan automorphisms of Mnsubscript𝑀𝑛M_{n}italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT:

Theorem 1.1 (Šemrl).

Let ϕ:MnMn,n3:italic-ϕformulae-sequencesubscript𝑀𝑛subscript𝑀𝑛𝑛3\phi:M_{n}\to M_{n},n\geq 3italic_ϕ : italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT → italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , italic_n ≥ 3 be a continuous map which preserves commutativity and spectrum. Then there exists an invertible matrix TMn𝑇subscript𝑀𝑛T\in M_{n}italic_T ∈ italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT such that ϕitalic-ϕ\phiitalic_ϕ is of the form (1.1).

A precursor to this result was first formulated in [29] and it assumed its current form a decade later in [30]. It also serves as the main motivation for our investigation. Namely, we are interested in the following general problem:

Problem 1.2.

Find necessary and sufficient conditions on a (Jordan) subalgebra 𝒜𝒜\mathcal{A}caligraphic_A of Mnsubscript𝑀𝑛M_{n}italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT such that each Jordan automorphism of 𝒜𝒜\mathcal{A}caligraphic_A, or more generally a Jordan embedding (monomorphism) ϕ:𝒜Mn:italic-ϕ𝒜subscript𝑀𝑛\phi:\mathcal{A}\to M_{n}italic_ϕ : caligraphic_A → italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, extends to a Jordan automorphism of Mnsubscript𝑀𝑛M_{n}italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT. Additionally, for such 𝒜𝒜\mathcal{A}caligraphic_A, characterize all such mappings ϕitalic-ϕ\phiitalic_ϕ via suitable preserving properties, similarly as in Theorem 1.1.

The first natural example to consider in the context of Problem 1.2 is the algebra 𝒯nsubscript𝒯𝑛\mathcal{T}_{n}caligraphic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT of n×n𝑛𝑛n\times nitalic_n × italic_n upper-triangular complex matrices. First of all, it is well-known that all Jordan automorphisms of 𝒯nsubscript𝒯𝑛\mathcal{T}_{n}caligraphic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT are of the form (1.1) for suitable invertible matrix TMn𝑇subscript𝑀𝑛T\in M_{n}italic_T ∈ italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT (see e.g.[27, Corollary 4]). The same holds true for all Jordan embeddings 𝒯nMnsubscript𝒯𝑛subscript𝑀𝑛\mathcal{T}_{n}\to M_{n}caligraphic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT → italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT (a special case of our first result, Theorem 1.3). Also, Jordan automorphisms of 𝒯nsubscript𝒯𝑛\mathcal{T}_{n}caligraphic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT (as well as more general type of maps on 𝒯nsubscript𝒯𝑛\mathcal{T}_{n}caligraphic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT) were characterized via both linear and nonlinear preserving properties by several authors (see e.g.[11, 12, 13, 14, 19, 24, 28, 37]). In particular, following Theorem 1.1, the second-named author [28] described all Jordan automorphisms of 𝒯nsubscript𝒯𝑛\mathcal{T}_{n}caligraphic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT as continuous spectrum and commutativity preserving surjective mappings 𝒯n𝒯nsubscript𝒯𝑛subscript𝒯𝑛\mathcal{T}_{n}\to\mathcal{T}_{n}caligraphic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT → caligraphic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT. Analyzing the main result of [28] it is easy to verify that the same holds true if instead of surjectivity one assumes injectivity, thus providing a positive solution for (both parts of) Problem 1.2 when 𝒜=𝒯n𝒜subscript𝒯𝑛\mathcal{A}=\mathcal{T}_{n}caligraphic_A = caligraphic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT.

Continuing in this vein, the next class of algebras we consider are subalgebras 𝒜𝒜\mathcal{A}caligraphic_A of Mnsubscript𝑀𝑛M_{n}italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT which contain 𝒯nsubscript𝒯𝑛\mathcal{T}_{n}caligraphic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT. As it turns out, these algebras are precisely the block upper-triangular subalgebras of Mnsubscript𝑀𝑛M_{n}italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT (see [34]). More specifically, any such algebra is of the form

(1.2)𝒜k1,,kr:=[Mk1,k1Mk1,k2Mk1,kr0Mk2,k2Mk2,kr00Mkr,kr]assignsubscript𝒜subscript𝑘1subscript𝑘𝑟matrixsubscript𝑀subscript𝑘1subscript𝑘1subscript𝑀subscript𝑘1subscript𝑘2subscript𝑀subscript𝑘1subscript𝑘𝑟0subscript𝑀subscript𝑘2subscript𝑘2subscript𝑀subscript𝑘2subscript𝑘𝑟00subscript𝑀subscript𝑘𝑟subscript𝑘𝑟\mathcal{A}_{k_{1},\ldots,k_{r}}:=\begin{bmatrix}M_{k_{1},k_{1}}&M_{k_{1},k_{2%}}&\cdots&M_{k_{1},k_{r}}\\0&M_{k_{2},k_{2}}&\cdots&M_{k_{2},k_{r}}\\\vdots&\vdots&\ddots&\vdots\\0&0&\cdots&M_{k_{r},k_{r}}\end{bmatrix}caligraphic_A start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_k start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT := [ start_ARG start_ROW start_CELL italic_M start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_CELL start_CELL italic_M start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_CELL start_CELL ⋯ end_CELL start_CELL italic_M start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL italic_M start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_CELL start_CELL ⋯ end_CELL start_CELL italic_M start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL ⋮ end_CELL start_CELL ⋮ end_CELL start_CELL ⋱ end_CELL start_CELL ⋮ end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL ⋯ end_CELL start_CELL italic_M start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ]

for some r,k1,,kr𝑟subscript𝑘1subscript𝑘𝑟r,k_{1},\ldots,k_{r}\in{\mathbb{N}}italic_r , italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_k start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ∈ blackboard_N such that k1++kr=nsubscript𝑘1subscript𝑘𝑟𝑛k_{1}+\cdots+k_{r}=nitalic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + ⋯ + italic_k start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT = italic_n. These algebras also appear in the literature as parabolic algebras (see e.g.[1, 34]). Note that the block upper-triangular algebras 𝒜1,n1subscript𝒜1𝑛1\mathcal{A}_{1,n-1}caligraphic_A start_POSTSUBSCRIPT 1 , italic_n - 1 end_POSTSUBSCRIPT and 𝒜n1,1subscript𝒜𝑛11\mathcal{A}_{n-1,1}caligraphic_A start_POSTSUBSCRIPT italic_n - 1 , 1 end_POSTSUBSCRIPT are exactly (up to similarity) the unital strict subalgebras of Mnsubscript𝑀𝑛M_{n}italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT of maximal dimension (see [1]). Our first introductory result verifies that block upper-triangular algebras indeed satisfy the desired extension property, providing an affirmative answer for the first part of Problem 1.2:

Theorem 1.3.

Let 𝒜Mn𝒜subscript𝑀𝑛\mathcal{A}\subseteq M_{n}caligraphic_A ⊆ italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT be a block upper-triangular subalgebra and let ϕ:𝒜Mn:italic-ϕ𝒜subscript𝑀𝑛\phi:\mathcal{A}\to M_{n}italic_ϕ : caligraphic_A → italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT be a Jordan embedding. Then there exists an invertible matrix TMn𝑇subscript𝑀𝑛T\in M_{n}italic_T ∈ italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT such that ϕitalic-ϕ\phiitalic_ϕ is of the form (1.1).

After providing the short proof of Theorem 1.3 (in Section §3) we also present simple criteria of when one block upper-triangular algebra (Jordan-)embeds into another (see Corollary 3.1 and 3.3). To put Theorem 1.3 in a wider context, there is a number of related (and somewhat more general) results concerning Jordan hom*omorphisms on certain classes of (block) upper-triangular rings and algebras. For example, an influential result by Beidar, Brešar and Chebotar states that every Jordan isomorphism of the algebra of upper-triangular matrices 𝒯n(𝒞),n2subscript𝒯𝑛𝒞𝑛2\mathcal{T}_{n}(\mathcal{C}),n\geq 2caligraphic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( caligraphic_C ) , italic_n ≥ 2 over a 2222-torsion-free commutative unital ring 𝒞𝒞\mathcal{C}caligraphic_C without nontrivial idempotents onto an arbitrary 𝒞𝒞\mathcal{C}caligraphic_C-algebra is necessarily multiplicative or antimultiplicative [4]. A generalization was given in [25] by removing the assumption that 𝒞𝒞\mathcal{C}caligraphic_C has no nontrivial idempotents. These results were further developed by Benkovič in [5]; any Jordan hom*omorphism from 𝒯n(𝒞),n2subscript𝒯𝑛𝒞𝑛2\mathcal{T}_{n}(\mathcal{C}),n\geq 2caligraphic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( caligraphic_C ) , italic_n ≥ 2 into an algebra \mathcal{B}caligraphic_B is a (so-called) near-sum of a hom*omorphism and an antihom*omorphism. We also mention papers [6, 15, 35, 36] which treat similar problems for Jordan hom*omorphisms between more general types of (block) triangular matrix rings.

Concerning block upper-triangular subalgebras in particular, the papers [3, 8, 9] (all sequels of the aforementioned paper [5]) describe Jordan hom*omorphisms of certain classes of more general algebras. As block upper-triangular algebras are (up to isomorphism) precisely finite-dimensional instances of nest algebras, papers [10, 26] are also relevant. Note that many of the mentioned results above assume that the image of Jordan hom*omorphisms are rings or algebras. In Theorem 1.3 we make no such assumption but this is obviously compensated by the fact that the codomain is restricted to Mnsubscript𝑀𝑛M_{n}italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, which incidentally also enables us to state the explicit form (1.1) of such maps.

After verifying that block upper-triangular algebras 𝒜𝒜\mathcal{A}caligraphic_A satisfy the first part of Problem 1.2, the next step is to characterize Jordan embeddings ϕ:𝒜Mn:italic-ϕ𝒜subscript𝑀𝑛\phi:\mathcal{A}\to M_{n}italic_ϕ : caligraphic_A → italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT via suitable preserver properties. Building upon both Theorem 1.1 and [28, Corollary 3], we arrived at the following theorem, which is also the main result of our paper:

Theorem 1.4.

Let 𝒜Mn,n3formulae-sequence𝒜subscript𝑀𝑛𝑛3\mathcal{A}\subseteq M_{n},n\geq 3caligraphic_A ⊆ italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , italic_n ≥ 3, be a block upper-triangular subalgebra and let ϕ:𝒜Mn:italic-ϕ𝒜subscript𝑀𝑛\phi:\mathcal{A}\to M_{n}italic_ϕ : caligraphic_A → italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT be a continuous injective map which preserves commutativity and spectrum. Then ϕitalic-ϕ\phiitalic_ϕ is a Jordan embedding and hence of the form (1.1) for some invertible matrix TMn𝑇subscript𝑀𝑛T\in M_{n}italic_T ∈ italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT.

Moreover, if we additionally assume that the image of ϕitalic-ϕ\phiitalic_ϕ is contained in 𝒜𝒜\mathcal{A}caligraphic_A, so that ϕ:𝒜𝒜:italic-ϕ𝒜𝒜\phi:\mathcal{A}\to\mathcal{A}italic_ϕ : caligraphic_A → caligraphic_A, using the invariance of domain theorem we show that the spectrum preserving assumption can be further relaxed to spectrum shrinking (Corollary 4.4).

This paper is organized as follows. We begin by providing terminology and notation in Section §2 along with some preliminary technical results related to block upper-triangular algebras and Jordan hom*omorphisms. Section §3 contains the proof of Theorem 1.3 and its consequences regarding (Jordan) embeddings between two block upper-triangular subalgebras of Mnsubscript𝑀𝑛M_{n}italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT. Section §4 is the core of the paper. It contains the proof of Theorem 1.4, which is nontrivial and contains most of the actual work. The proof is carried out by induction on n𝑛nitalic_n. After proving Theorem 1.4 a few direct consequences are stated. Finally, in Section §5, we demonstrate the necessity of all assumptions of Theorem 1.4 via counterexamples.

2. Preliminaries

We begin this section by introducing some notation and terminology. First of all, for a unital algebra 𝒜𝒜\mathcal{A}caligraphic_A by 𝒜×superscript𝒜\mathcal{A}^{\times}caligraphic_A start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT we denote the set of all invertible elements in 𝒜𝒜\mathcal{A}caligraphic_A.

Let n𝑛n\in{\mathbb{N}}italic_n ∈ blackboard_N.

  • As usual, by Mn:=Mn()assignsubscript𝑀𝑛subscript𝑀𝑛M_{n}:=M_{n}({\mathbb{C}})italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT := italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_C ) we denote the set of all n×n𝑛𝑛n\times nitalic_n × italic_n complex matrices and by Mm,nsubscript𝑀𝑚𝑛M_{m,n}italic_M start_POSTSUBSCRIPT italic_m , italic_n end_POSTSUBSCRIPT (m𝑚m\in{\mathbb{N}}italic_m ∈ blackboard_N) the set of all m×n𝑚𝑛m\times nitalic_m × italic_n complex matrices.

  • For A,BMn𝐴𝐵subscript𝑀𝑛A,B\in M_{n}italic_A , italic_B ∈ italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT we denote by AB𝐴𝐵A\leftrightarrow Bitalic_A ↔ italic_B the fact that A𝐴Aitalic_A and B𝐵Bitalic_B commute, i.e.AB=BA𝐴𝐵𝐵𝐴AB=BAitalic_A italic_B = italic_B italic_A.

  • We say that the matrices A,BMn𝐴𝐵subscript𝑀𝑛A,B\in M_{n}italic_A , italic_B ∈ italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT are orthogonal, and write ABperpendicular-to𝐴𝐵A\perp Bitalic_A ⟂ italic_B, if AB=BA=0𝐴𝐵𝐵𝐴0AB=BA=0italic_A italic_B = italic_B italic_A = 0. Furthermore, by Asuperscript𝐴perpendicular-toA^{\perp}italic_A start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT we denote the set of all matrices in Mnsubscript𝑀𝑛M_{n}italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT orthogonal to A𝐴Aitalic_A.

  • For A,BMn𝐴𝐵subscript𝑀𝑛A,B\in M_{n}italic_A , italic_B ∈ italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT we write AB=AB+BA𝐴𝐵𝐴𝐵𝐵𝐴A\circ B=AB+BAitalic_A ∘ italic_B = italic_A italic_B + italic_B italic_A.

  • For AMn𝐴subscript𝑀𝑛A\in M_{n}italic_A ∈ italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT we denote the characteristic polynomial of A𝐴Aitalic_A by pA(x)=det(AxI)subscript𝑝𝐴𝑥𝐴𝑥𝐼p_{A}(x)=\det(A-xI)italic_p start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT ( italic_x ) = roman_det ( italic_A - italic_x italic_I ), by R(A)𝑅𝐴R(A)italic_R ( italic_A ) the image of A𝐴Aitalic_A and by N(A)𝑁𝐴N(A)italic_N ( italic_A ) the nullspace of A𝐴Aitalic_A.

  • By 𝒯nsubscript𝒯𝑛\mathcal{T}_{n}caligraphic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT and 𝒟nsubscript𝒟𝑛\mathcal{D}_{n}caligraphic_D start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT we denote the sets of all upper-triangular and diagonal matrices of Mnsubscript𝑀𝑛M_{n}italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, respectively.

  • By 𝒜k1,,krsubscript𝒜subscript𝑘1subscript𝑘𝑟\mathcal{A}_{k_{1},\ldots,k_{r}}caligraphic_A start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_k start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT we denote the block upper-triangular algebra (1.2) for some r,k1,,kr𝑟subscript𝑘1subscript𝑘𝑟r,k_{1},\ldots,k_{r}\in{\mathbb{N}}italic_r , italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_k start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ∈ blackboard_N such that k1++kr=nsubscript𝑘1subscript𝑘𝑟𝑛k_{1}+\cdots+k_{r}=nitalic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + ⋯ + italic_k start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT = italic_n.

  • By ΔΔ\Deltaroman_Δ we denote the diagonal matrix diag(1,,n)diag1𝑛\operatorname{diag}(1,\ldots,n)roman_diag ( 1 , … , italic_n ).

As usual, we will frequently identify vectors x=(x1,,xn)n𝑥subscript𝑥1subscript𝑥𝑛superscript𝑛x=(x_{1},\ldots,x_{n})\in{\mathbb{C}}^{n}italic_x = ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∈ blackboard_C start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT as column-matrices

x=[x1xn]𝑥matrixsubscript𝑥1subscript𝑥𝑛x=\begin{bmatrix}x_{1}\\\vdots\\x_{n}\end{bmatrix}italic_x = [ start_ARG start_ROW start_CELL italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL ⋮ end_CELL end_ROW start_ROW start_CELL italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ]

and xt=[x1xn]superscript𝑥𝑡matrixsubscript𝑥1subscript𝑥𝑛x^{t}=\begin{bmatrix}x_{1}&\cdots&x_{n}\end{bmatrix}italic_x start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT = [ start_ARG start_ROW start_CELL italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_CELL start_CELL ⋯ end_CELL start_CELL italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ] as row-matrices.

As any matrix A=(Aij)ijMn𝐴subscriptsubscript𝐴𝑖𝑗𝑖𝑗subscript𝑀𝑛A=(A_{ij})_{ij}\in M_{n}italic_A = ( italic_A start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ∈ italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT can be understood as a map {1,,n}2,(i,j)Aijformulae-sequencesuperscript1𝑛2maps-to𝑖𝑗subscript𝐴𝑖𝑗\{1,\ldots,n\}^{2}\to{\mathbb{C}},(i,j)\mapsto A_{ij}{ 1 , … , italic_n } start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT → blackboard_C , ( italic_i , italic_j ) ↦ italic_A start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT, we consider its support suppAsupp𝐴\operatorname{supp}Aroman_supp italic_A as the set of all indices (i,j){1,,n}2𝑖𝑗superscript1𝑛2(i,j)\in\{1,\ldots,n\}^{2}( italic_i , italic_j ) ∈ { 1 , … , italic_n } start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT such that Aij0subscript𝐴𝑖𝑗0A_{ij}\neq 0italic_A start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ≠ 0. We also say that A𝐴Aitalic_A is supported in a set S{1,,n}2𝑆superscript1𝑛2S\subseteq\{1,\ldots,n\}^{2}italic_S ⊆ { 1 , … , italic_n } start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT if suppASsupp𝐴𝑆\operatorname{supp}A\subseteq Sroman_supp italic_A ⊆ italic_S.

Lemma 2.1.

Let

J:=[0001001001001000]Mn.assign𝐽matrix0001001001001000subscript𝑀𝑛J:=\begin{bmatrix}0&0&\cdots&0&1\\0&0&\cdots&1&0\\\vdots&\vdots&\ddots&\vdots&\vdots\\0&1&\cdots&0&0\\1&0&\cdots&0&0\\\end{bmatrix}\in M_{n}.italic_J := [ start_ARG start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL ⋯ end_CELL start_CELL 0 end_CELL start_CELL 1 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL ⋯ end_CELL start_CELL 1 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL ⋮ end_CELL start_CELL ⋮ end_CELL start_CELL ⋱ end_CELL start_CELL ⋮ end_CELL start_CELL ⋮ end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 1 end_CELL start_CELL ⋯ end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 1 end_CELL start_CELL 0 end_CELL start_CELL ⋯ end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW end_ARG ] ∈ italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT .

Then the map 𝒜k1,,kr𝒜kr,,k1,XJXtJformulae-sequencesubscript𝒜subscript𝑘1subscript𝑘𝑟subscript𝒜subscript𝑘𝑟subscript𝑘1maps-to𝑋𝐽superscript𝑋𝑡𝐽\mathcal{A}_{k_{1},\dots,k_{r}}\to\mathcal{A}_{k_{r},\dots,k_{1}},X\mapsto JX^%{t}Jcaligraphic_A start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_k start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT → caligraphic_A start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT , … , italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT , italic_X ↦ italic_J italic_X start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_J is an algebra antiisomorphism.

Proof.

From J2=Isuperscript𝐽2𝐼J^{2}=Iitalic_J start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_I and the fact that transposition is antimultiplicative we conclude that the (obviously injective and additive) map 𝒜k1,,krMnsubscript𝒜subscript𝑘1subscript𝑘𝑟subscript𝑀𝑛\mathcal{A}_{k_{1},\dots,k_{r}}\to M_{n}caligraphic_A start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_k start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT → italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT is an algebra anti-hom*omorphism.It remains to show that JXtJ𝒜kr,,k1𝐽superscript𝑋𝑡𝐽subscript𝒜subscript𝑘𝑟subscript𝑘1JX^{t}J\in\mathcal{A}_{k_{r},\ldots,k_{1}}italic_J italic_X start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_J ∈ caligraphic_A start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT , … , italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT for all X𝒜k1,,kr𝑋subscript𝒜subscript𝑘1subscript𝑘𝑟X\in\mathcal{A}_{k_{1},\ldots,k_{r}}italic_X ∈ caligraphic_A start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_k start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT. Indeed, for each 0sr10𝑠𝑟10\leq s\leq r-10 ≤ italic_s ≤ italic_r - 1, 1ik1++ks+11𝑖subscript𝑘1subscript𝑘𝑠11\leq i\leq k_{1}+\cdots+k_{s+1}1 ≤ italic_i ≤ italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + ⋯ + italic_k start_POSTSUBSCRIPT italic_s + 1 end_POSTSUBSCRIPT and k1++ks+1jnsubscript𝑘1subscript𝑘𝑠1𝑗𝑛k_{1}+\cdots+k_{s}+1\leq j\leq nitalic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + ⋯ + italic_k start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT + 1 ≤ italic_j ≤ italic_n we have

JEijtJ=En+1j,n+1i𝒜kr,,k1𝐽superscriptsubscript𝐸𝑖𝑗𝑡𝐽subscript𝐸𝑛1𝑗𝑛1𝑖subscript𝒜subscript𝑘𝑟subscript𝑘1JE_{ij}^{t}J=E_{n+1-j,n+1-i}\in\mathcal{A}_{k_{r},\ldots,k_{1}}italic_J italic_E start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_J = italic_E start_POSTSUBSCRIPT italic_n + 1 - italic_j , italic_n + 1 - italic_i end_POSTSUBSCRIPT ∈ caligraphic_A start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT , … , italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT

sincekr++ks+1n+1insubscript𝑘𝑟subscript𝑘𝑠1𝑛1𝑖𝑛k_{r}+\cdots+k_{s}+1\leq n+1-i\leq nitalic_k start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT + ⋯ + italic_k start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT + 1 ≤ italic_n + 1 - italic_i ≤ italic_n and 1n+1jkr++ks+11𝑛1𝑗subscript𝑘𝑟subscript𝑘𝑠11\leq n+1-j\leq k_{r}+\cdots+k_{s+1}1 ≤ italic_n + 1 - italic_j ≤ italic_k start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT + ⋯ + italic_k start_POSTSUBSCRIPT italic_s + 1 end_POSTSUBSCRIPT.∎

This map is so ubiquitous that we will introduce a notation

X:=JXtJ.assignsuperscript𝑋direct-product𝐽superscript𝑋𝑡𝐽X^{\odot}:=JX^{t}J.italic_X start_POSTSUPERSCRIPT ⊙ end_POSTSUPERSCRIPT := italic_J italic_X start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_J .

Note that it actually corresponds to mirroring the matrix X𝑋Xitalic_X along its secondary diagonal. Also, for a block upper-triangular algebra 𝒜Mn𝒜subscript𝑀𝑛\mathcal{A}\subseteq M_{n}caligraphic_A ⊆ italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT we denote by 𝒜Mnsuperscript𝒜direct-productsubscript𝑀𝑛\mathcal{A}^{\odot}\subseteq M_{n}caligraphic_A start_POSTSUPERSCRIPT ⊙ end_POSTSUPERSCRIPT ⊆ italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT the image of 𝒜𝒜\mathcal{A}caligraphic_A under the map XXmaps-to𝑋superscript𝑋direct-productX\mapsto X^{\odot}italic_X ↦ italic_X start_POSTSUPERSCRIPT ⊙ end_POSTSUPERSCRIPT. Then 𝒜superscript𝒜direct-product\mathcal{A}^{\odot}caligraphic_A start_POSTSUPERSCRIPT ⊙ end_POSTSUPERSCRIPT is the block upper-triangular algebra obtained from 𝒜𝒜\mathcal{A}caligraphic_A by reversing the sizes of the diagonal blocks.

Lemma 2.2.

Let A𝒜𝐴𝒜A\in\mathcal{A}italic_A ∈ caligraphic_A be a matrix with n𝑛nitalic_n distinct eigenvalues. Then A𝐴Aitalic_A is diagonalizable within the algebra 𝒜𝒜\mathcal{A}caligraphic_A. Furthermore, if AEss𝐴subscript𝐸𝑠𝑠A\leftrightarrow E_{ss}italic_A ↔ italic_E start_POSTSUBSCRIPT italic_s italic_s end_POSTSUBSCRIPT for some 1sn1𝑠𝑛1\leq s\leq n1 ≤ italic_s ≤ italic_n, then the similarity matrix T=[tij]𝒜×𝑇delimited-[]subscript𝑡𝑖𝑗superscript𝒜T=[t_{ij}]\in\mathcal{A}^{\times}italic_T = [ italic_t start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ] ∈ caligraphic_A start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT can be chosen to satisfy TEss𝑇subscript𝐸𝑠𝑠T\leftrightarrow E_{ss}italic_T ↔ italic_E start_POSTSUBSCRIPT italic_s italic_s end_POSTSUBSCRIPT and tss=1subscript𝑡𝑠𝑠1t_{ss}=1italic_t start_POSTSUBSCRIPT italic_s italic_s end_POSTSUBSCRIPT = 1.

Proof.

If 𝒜=Mn𝒜subscript𝑀𝑛\mathcal{A}=M_{n}caligraphic_A = italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, the first statement is well-known. So let 𝒜𝒜\mathcal{A}caligraphic_A be a proper block upper-triangular subalgebra of Mnsubscript𝑀𝑛M_{n}italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT. We prove the lemma by induction on n𝑛nitalic_n. For n=1𝑛1n=1italic_n = 1 the statement is clear, so suppose that the first statement of the lemma is true for any 1m<n1𝑚𝑛1\leq m<n1 ≤ italic_m < italic_n. The algebra 𝒜𝒜\mathcal{A}caligraphic_A can be split so that any A𝒜𝐴𝒜A\in\mathcal{A}italic_A ∈ caligraphic_A can be written

A=[A11A120A22],𝐴matrixsubscript𝐴11subscript𝐴120subscript𝐴22A=\begin{bmatrix}A_{11}&A_{12}\\0&A_{22}\end{bmatrix},italic_A = [ start_ARG start_ROW start_CELL italic_A start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT end_CELL start_CELL italic_A start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL italic_A start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ] ,

where A11Mk1subscript𝐴11subscript𝑀subscript𝑘1A_{11}\in M_{k_{1}}italic_A start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT ∈ italic_M start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT, A12Mk1,nk1subscript𝐴12subscript𝑀subscript𝑘1𝑛subscript𝑘1A_{12}\in M_{k_{1},n-k_{1}}italic_A start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ∈ italic_M start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_n - italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPTand A22subscript𝐴22A_{22}italic_A start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT is a member of a block-upper-triangular subalgebra 𝒜2subscript𝒜2\mathcal{A}_{2}caligraphic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT of Mnk1subscript𝑀𝑛subscript𝑘1M_{n-k_{1}}italic_M start_POSTSUBSCRIPT italic_n - italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT. By the induction hypothesis, there exist invertible matrices S1Mk1subscript𝑆1subscript𝑀subscript𝑘1S_{1}\in M_{k_{1}}italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∈ italic_M start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT and S2𝒜2subscript𝑆2subscript𝒜2S_{2}\in\mathcal{A}_{2}italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∈ caligraphic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, diagonal matrices D1Mk1subscript𝐷1subscript𝑀subscript𝑘1D_{1}\in M_{k_{1}}italic_D start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∈ italic_M start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT, D2𝒜2subscript𝐷2subscript𝒜2D_{2}\in\mathcal{A}_{2}italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∈ caligraphic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT such that A11=S1D1S11subscript𝐴11subscript𝑆1subscript𝐷1superscriptsubscript𝑆11A_{11}=S_{1}D_{1}S_{1}^{-1}italic_A start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT = italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT and A22=S2D2S21subscript𝐴22subscript𝑆2subscript𝐷2superscriptsubscript𝑆21A_{22}=S_{2}D_{2}S_{2}^{-1}italic_A start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT = italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT and, we obtain that

A=[S100S2][D1S11A12S20D2][S1100S21.]𝐴matrixsubscript𝑆100subscript𝑆2matrixsubscript𝐷1superscriptsubscript𝑆11subscript𝐴12subscript𝑆20subscript𝐷2matrixsuperscriptsubscript𝑆1100superscriptsubscript𝑆21A=\begin{bmatrix}S_{1}&0\\0&S_{2}\end{bmatrix}\begin{bmatrix}D_{1}&S_{1}^{-1}A_{12}S_{2}\\0&D_{2}\end{bmatrix}\begin{bmatrix}S_{1}^{-1}&0\\0&S_{2}^{-1}.\end{bmatrix}italic_A = [ start_ARG start_ROW start_CELL italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ] [ start_ARG start_ROW start_CELL italic_D start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_CELL start_CELL italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_A start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ] [ start_ARG start_ROW start_CELL italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT . end_CELL end_ROW end_ARG ]

Further we diagonalize the matrix in the middle. We aim to find the matrix X𝑋Xitalic_X such that

[D1S11A12S20D2]=[Ik1X0Ink1][D100D2][Ik1X0Ink1]1=[D1XD2D1X0D2].matrixsubscript𝐷1superscriptsubscript𝑆11subscript𝐴12subscript𝑆20subscript𝐷2matrixsubscript𝐼subscript𝑘1𝑋0subscript𝐼𝑛subscript𝑘1matrixsubscript𝐷100subscript𝐷2superscriptmatrixsubscript𝐼subscript𝑘1𝑋0subscript𝐼𝑛subscript𝑘11matrixsubscript𝐷1𝑋subscript𝐷2subscript𝐷1𝑋0subscript𝐷2\begin{bmatrix}D_{1}&S_{1}^{-1}A_{12}S_{2}\\0&D_{2}\end{bmatrix}=\begin{bmatrix}I_{k_{1}}&X\\0&I_{n-k_{1}}\end{bmatrix}\begin{bmatrix}D_{1}&0\\0&D_{2}\end{bmatrix}\begin{bmatrix}I_{k_{1}}&X\\0&I_{n-k_{1}}\end{bmatrix}^{-1}=\begin{bmatrix}D_{1}&XD_{2}-D_{1}X\\0&D_{2}\end{bmatrix}.[ start_ARG start_ROW start_CELL italic_D start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_CELL start_CELL italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_A start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ] = [ start_ARG start_ROW start_CELL italic_I start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_CELL start_CELL italic_X end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL italic_I start_POSTSUBSCRIPT italic_n - italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ] [ start_ARG start_ROW start_CELL italic_D start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ] [ start_ARG start_ROW start_CELL italic_I start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_CELL start_CELL italic_X end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL italic_I start_POSTSUBSCRIPT italic_n - italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ] start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = [ start_ARG start_ROW start_CELL italic_D start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_CELL start_CELL italic_X italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - italic_D start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_X end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ] .

By the Sylvester equation [18], since σ(D1)σ(D2)𝜎subscript𝐷1𝜎subscript𝐷2\sigma(D_{1})\cap\sigma(D_{2})italic_σ ( italic_D start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ∩ italic_σ ( italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) is empty, we have a unique solution X𝑋Xitalic_X satisfying XD2D1X=S11A12S2𝑋subscript𝐷2subscript𝐷1𝑋superscriptsubscript𝑆11subscript𝐴12subscript𝑆2XD_{2}-D_{1}X=S_{1}^{-1}A_{12}S_{2}italic_X italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - italic_D start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_X = italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_A start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT.

The verification of the second claim uses the same idea and is left to the reader.∎

At the end of this preliminary section, we state a few basic properties of Jordan hom*omorphisms. For an algebra 𝒜𝒜\mathcal{A}caligraphic_A, as usual, we denote the commutator of a,b𝒜𝑎𝑏𝒜a,b\in\mathcal{A}italic_a , italic_b ∈ caligraphic_A as [a,b]=abba𝑎𝑏𝑎𝑏𝑏𝑎[a,b]=ab-ba[ italic_a , italic_b ] = italic_a italic_b - italic_b italic_a. Proofs of (a),(b) and (c) of the following remark are elementary and can be found in [20].

Remark 2.3.

Let ϕ:𝒜:italic-ϕ𝒜\phi:\mathcal{A}\to\mathcal{B}italic_ϕ : caligraphic_A → caligraphic_B be a Jordan hom*omorphism between complex algebras 𝒜𝒜\mathcal{A}caligraphic_A and \mathcal{B}caligraphic_B. We have:

  1. (a)

    ϕ(aba)=ϕ(a)ϕ(b)ϕ(a)italic-ϕ𝑎𝑏𝑎italic-ϕ𝑎italic-ϕ𝑏italic-ϕ𝑎\phi(aba)=\phi(a)\phi(b)\phi(a)italic_ϕ ( italic_a italic_b italic_a ) = italic_ϕ ( italic_a ) italic_ϕ ( italic_b ) italic_ϕ ( italic_a ) for all a,b𝒜𝑎𝑏𝒜a,b\in\mathcal{A}italic_a , italic_b ∈ caligraphic_A.

  2. (b)

    ϕ([[a,b],c])=[[ϕ(a),ϕ(b)],ϕ(c)]italic-ϕ𝑎𝑏𝑐italic-ϕ𝑎italic-ϕ𝑏italic-ϕ𝑐\phi([[a,b],c])=[[\phi(a),\phi(b)],\phi(c)]italic_ϕ ( [ [ italic_a , italic_b ] , italic_c ] ) = [ [ italic_ϕ ( italic_a ) , italic_ϕ ( italic_b ) ] , italic_ϕ ( italic_c ) ] for all a,b,c𝒜𝑎𝑏𝑐𝒜a,b,c\in\mathcal{A}italic_a , italic_b , italic_c ∈ caligraphic_A.

  3. (c)

    ϕ([a,b]2)=[ϕ(a),ϕ(b)]2italic-ϕsuperscript𝑎𝑏2superscriptitalic-ϕ𝑎italic-ϕ𝑏2\phi([a,b]^{2})=[\phi(a),\phi(b)]^{2}italic_ϕ ( [ italic_a , italic_b ] start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) = [ italic_ϕ ( italic_a ) , italic_ϕ ( italic_b ) ] start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT for all a,b𝒜𝑎𝑏𝒜a,b\in\mathcal{A}italic_a , italic_b ∈ caligraphic_A.

  4. (d)

    Obviously ϕitalic-ϕ\phiitalic_ϕ preserves idempotents, i.e.for any idempotent a𝒜𝑎𝒜a\in\mathcal{A}italic_a ∈ caligraphic_A, the element ϕ(a)italic-ϕ𝑎\phi(a)italic_ϕ ( italic_a ) is an idempotent in \mathcal{B}caligraphic_B.

  5. (e)

    If the image of ϕitalic-ϕ\phiitalic_ϕ has a trivial commutant in \mathcal{B}caligraphic_B (i.e.if b𝑏b\in\mathcal{B}italic_b ∈ caligraphic_B commutes with every element of the image of ϕitalic-ϕ\phiitalic_ϕ, then b𝑏bitalic_b is zero or a multiple of the unity in \mathcal{B}caligraphic_B, if it exists), then by (b) and (c) one easily sees that ϕitalic-ϕ\phiitalic_ϕ preserves commutativity.

  6. (f)

    Suppose 𝒜𝒜\mathcal{A}caligraphic_A and \mathcal{B}caligraphic_B are algebras with unities 1𝒜subscript1𝒜1_{\mathcal{A}}1 start_POSTSUBSCRIPT caligraphic_A end_POSTSUBSCRIPT and 1subscript11_{\mathcal{B}}1 start_POSTSUBSCRIPT caligraphic_B end_POSTSUBSCRIPT, respectively. Let ϕ:𝒜:italic-ϕ𝒜\phi:\mathcal{A}\to\mathcal{B}italic_ϕ : caligraphic_A → caligraphic_B be a Jordan hom*omorphism such that 1subscript11_{\mathcal{B}}1 start_POSTSUBSCRIPT caligraphic_B end_POSTSUBSCRIPT is in the image of ϕitalic-ϕ\phiitalic_ϕ. Then ϕitalic-ϕ\phiitalic_ϕ is unital and preserves inverses in the sense that for every a𝒜×𝑎superscript𝒜a\in\mathcal{A}^{\times}italic_a ∈ caligraphic_A start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT we have ϕ(a)×italic-ϕ𝑎superscript\phi(a)\in\mathcal{B}^{\times}italic_ϕ ( italic_a ) ∈ caligraphic_B start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT and ϕ(a1)=ϕ(a)1italic-ϕsuperscript𝑎1italic-ϕsuperscript𝑎1\phi(a^{-1})=\phi(a)^{-1}italic_ϕ ( italic_a start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) = italic_ϕ ( italic_a ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ([16, Thm 2.5], in Slovenian). Indeed, suppose that a0𝒜subscript𝑎0𝒜a_{0}\in\mathcal{A}italic_a start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ caligraphic_A satisfies ϕ(a0)=1italic-ϕsubscript𝑎0subscript1\phi(a_{0})=1_{\mathcal{B}}italic_ϕ ( italic_a start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = 1 start_POSTSUBSCRIPT caligraphic_B end_POSTSUBSCRIPT. Then

    21=ϕ(a0+a0)=ϕ(1𝒜a0)=ϕ(1𝒜)ϕ(a0)=ϕ(1𝒜)1=2ϕ(1𝒜)2subscript1italic-ϕsubscript𝑎0subscript𝑎0italic-ϕsubscript1𝒜subscript𝑎0italic-ϕsubscript1𝒜italic-ϕsubscript𝑎0italic-ϕsubscript1𝒜subscript12italic-ϕsubscript1𝒜2\cdot 1_{\mathcal{B}}=\phi(a_{0}+a_{0})=\phi(1_{\mathcal{A}}\circ a_{0})=\phi%(1_{\mathcal{A}})\circ\phi(a_{0})=\phi(1_{\mathcal{A}})\circ 1_{\mathcal{B}}=2%\phi(1_{\mathcal{A}})2 ⋅ 1 start_POSTSUBSCRIPT caligraphic_B end_POSTSUBSCRIPT = italic_ϕ ( italic_a start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + italic_a start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = italic_ϕ ( 1 start_POSTSUBSCRIPT caligraphic_A end_POSTSUBSCRIPT ∘ italic_a start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = italic_ϕ ( 1 start_POSTSUBSCRIPT caligraphic_A end_POSTSUBSCRIPT ) ∘ italic_ϕ ( italic_a start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = italic_ϕ ( 1 start_POSTSUBSCRIPT caligraphic_A end_POSTSUBSCRIPT ) ∘ 1 start_POSTSUBSCRIPT caligraphic_B end_POSTSUBSCRIPT = 2 italic_ϕ ( 1 start_POSTSUBSCRIPT caligraphic_A end_POSTSUBSCRIPT )

    which implies ϕ(1𝒜)=1italic-ϕsubscript1𝒜subscript1\phi(1_{\mathcal{A}})=1_{\mathcal{B}}italic_ϕ ( 1 start_POSTSUBSCRIPT caligraphic_A end_POSTSUBSCRIPT ) = 1 start_POSTSUBSCRIPT caligraphic_B end_POSTSUBSCRIPT so ϕitalic-ϕ\phiitalic_ϕ is unital.Let a𝒜×𝑎superscript𝒜a\in\mathcal{A}^{\times}italic_a ∈ caligraphic_A start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT be arbitrary. Then (a) gives

    ϕ(a)=ϕ(aa1a)=ϕ(a)ϕ(a1)ϕ(a).italic-ϕ𝑎italic-ϕ𝑎superscript𝑎1𝑎italic-ϕ𝑎italic-ϕsuperscript𝑎1italic-ϕ𝑎\phi(a)=\phi(aa^{-1}a)=\phi(a)\phi(a^{-1})\phi(a).italic_ϕ ( italic_a ) = italic_ϕ ( italic_a italic_a start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_a ) = italic_ϕ ( italic_a ) italic_ϕ ( italic_a start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) italic_ϕ ( italic_a ) .

    If we set p1:=ϕ(a)ϕ(a1)assignsubscript𝑝1italic-ϕ𝑎italic-ϕsuperscript𝑎1p_{1}:=\phi(a)\phi(a^{-1})italic_p start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT := italic_ϕ ( italic_a ) italic_ϕ ( italic_a start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) and p2:=ϕ(a1)ϕ(a)assignsubscript𝑝2italic-ϕsuperscript𝑎1italic-ϕ𝑎p_{2}:=\phi(a^{-1})\phi(a)italic_p start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT := italic_ϕ ( italic_a start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) italic_ϕ ( italic_a ), it is immediate that p1subscript𝑝1p_{1}italic_p start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and p2subscript𝑝2p_{2}italic_p start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT are idempotents in \mathcal{B}caligraphic_B. Furthermore, we have

    p1+p2=ϕ(a)ϕ(a1)=2ϕ(aa1)=2ϕ(1𝒜)=21subscript𝑝1subscript𝑝2italic-ϕ𝑎italic-ϕsuperscript𝑎12italic-ϕ𝑎superscript𝑎12italic-ϕsubscript1𝒜2subscript1p_{1}+p_{2}=\phi(a)\circ\phi(a^{-1})=2\phi(a\circ a^{-1})=2\phi(1_{\mathcal{A}%})=2\cdot 1_{\mathcal{B}}italic_p start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_p start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_ϕ ( italic_a ) ∘ italic_ϕ ( italic_a start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) = 2 italic_ϕ ( italic_a ∘ italic_a start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) = 2 italic_ϕ ( 1 start_POSTSUBSCRIPT caligraphic_A end_POSTSUBSCRIPT ) = 2 ⋅ 1 start_POSTSUBSCRIPT caligraphic_B end_POSTSUBSCRIPT

    and hence 21p1=p22subscript1subscript𝑝1subscript𝑝22\cdot 1_{\mathcal{B}}-p_{1}=p_{2}2 ⋅ 1 start_POSTSUBSCRIPT caligraphic_B end_POSTSUBSCRIPT - italic_p start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_p start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT is idempotent as well. It follows that 2(p11)=02subscript𝑝1subscript102(p_{1}-1_{\mathcal{B}})=02 ( italic_p start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - 1 start_POSTSUBSCRIPT caligraphic_B end_POSTSUBSCRIPT ) = 0 so we conclude p1=1subscript𝑝1subscript1p_{1}=1_{\mathcal{B}}italic_p start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = 1 start_POSTSUBSCRIPT caligraphic_B end_POSTSUBSCRIPT and then p2=1subscript𝑝2subscript1p_{2}=1_{\mathcal{B}}italic_p start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 1 start_POSTSUBSCRIPT caligraphic_B end_POSTSUBSCRIPT as well. Therefore, ϕ(a)italic-ϕ𝑎\phi(a)italic_ϕ ( italic_a ) is invertible in \mathcal{B}caligraphic_B, with the inverse being equal to ϕ(a1)italic-ϕsuperscript𝑎1\phi(a^{-1})italic_ϕ ( italic_a start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ). In particular, all linear unital Jordan hom*omorphisms between unital algebras are spectrum preserving.

3. Block upper-triangular subalgebras and their Jordan embeddings

We start this section by proving Theorem 1.3.

Proof of Theorem 1.3.

We prove the theorem by induction on n𝑛nitalic_n. For n=1𝑛1n=1italic_n = 1 the statement is clear. So suppose it holds for all k𝑘kitalic_k, 1k<n1𝑘𝑛1\leq k<n1 ≤ italic_k < italic_n, and let 𝒜Mn𝒜subscript𝑀𝑛\mathcal{A}\subseteq M_{n}caligraphic_A ⊆ italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT be a block upper-triangular algebra. As ϕitalic-ϕ\phiitalic_ϕ is Jordan hom*omorphism, it preserves idempotents. For every distinct i,j{1,2,,n}𝑖𝑗12𝑛i,j\in\{1,2,\ldots,n\}italic_i , italic_j ∈ { 1 , 2 , … , italic_n } we have0=ϕ(EiiEjj)=ϕ(Eii)ϕ(Ejj)0italic-ϕsubscript𝐸𝑖𝑖subscript𝐸𝑗𝑗italic-ϕsubscript𝐸𝑖𝑖italic-ϕsubscript𝐸𝑗𝑗0=\phi(E_{ii}\circ E_{jj})=\phi(E_{ii})\circ\phi(E_{jj})0 = italic_ϕ ( italic_E start_POSTSUBSCRIPT italic_i italic_i end_POSTSUBSCRIPT ∘ italic_E start_POSTSUBSCRIPT italic_j italic_j end_POSTSUBSCRIPT ) = italic_ϕ ( italic_E start_POSTSUBSCRIPT italic_i italic_i end_POSTSUBSCRIPT ) ∘ italic_ϕ ( italic_E start_POSTSUBSCRIPT italic_j italic_j end_POSTSUBSCRIPT ) and so, ϕ(Eii)italic-ϕsubscript𝐸𝑖𝑖\phi(E_{ii})italic_ϕ ( italic_E start_POSTSUBSCRIPT italic_i italic_i end_POSTSUBSCRIPT ), i=1,2,,n𝑖12𝑛i=1,2,\dots,nitalic_i = 1 , 2 , … , italic_n, is a family of n𝑛nitalic_n pairwise orthogonal idempotents. This follows from a general fact: if P𝑃Pitalic_P, QMn𝑄subscript𝑀𝑛Q\in M_{n}italic_Q ∈ italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT are idempotents such that PQ=0𝑃𝑄0P\circ Q=0italic_P ∘ italic_Q = 0, then PQperpendicular-to𝑃𝑄P\perp Qitalic_P ⟂ italic_Q. Indeed, we have PQ+QP=0𝑃𝑄𝑄𝑃0PQ+QP=0italic_P italic_Q + italic_Q italic_P = 0, so by multiplying this by P𝑃Pitalic_P from both sides, one gets PQP=0𝑃𝑄𝑃0PQP=0italic_P italic_Q italic_P = 0. As QP=PQ𝑄𝑃𝑃𝑄QP=-PQitalic_Q italic_P = - italic_P italic_Q, this implies PQ=PQP=0𝑃𝑄𝑃𝑄𝑃0PQ=-PQP=0italic_P italic_Q = - italic_P italic_Q italic_P = 0. Then also PQ=QP=0𝑃𝑄𝑄𝑃0PQ=-QP=0italic_P italic_Q = - italic_Q italic_P = 0. It follows that there exists an invertible matrix S𝑆Sitalic_S such that ϕ(Eii)=SEiiS1italic-ϕsubscript𝐸𝑖𝑖𝑆subscript𝐸𝑖𝑖superscript𝑆1\phi(E_{ii})=SE_{ii}S^{-1}italic_ϕ ( italic_E start_POSTSUBSCRIPT italic_i italic_i end_POSTSUBSCRIPT ) = italic_S italic_E start_POSTSUBSCRIPT italic_i italic_i end_POSTSUBSCRIPT italic_S start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT for all 1in1𝑖𝑛1\leq i\leq n1 ≤ italic_i ≤ italic_n. With no loss of generality we assume that ϕ(E11)=E11italic-ϕsubscript𝐸11subscript𝐸11\phi(E_{11})=E_{11}italic_ϕ ( italic_E start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT ) = italic_E start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT and in turn, SE11=E11S𝑆subscript𝐸11subscript𝐸11𝑆SE_{11}=E_{11}Sitalic_S italic_E start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT = italic_E start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT italic_S. For every matrix Aspan{Eij:2i,jn}𝒜𝐴spanconditional-setsubscript𝐸𝑖𝑗formulae-sequence2𝑖𝑗𝑛𝒜A\in\mathrm{span}\{E_{ij}:2\leq i,j\leq n\}\cap\mathcal{A}italic_A ∈ roman_span { italic_E start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT : 2 ≤ italic_i , italic_j ≤ italic_n } ∩ caligraphic_A we have that AE11=0𝐴subscript𝐸110A\circ E_{11}=0italic_A ∘ italic_E start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT = 0 and hence ϕ(A)E11=0italic-ϕ𝐴subscript𝐸110\phi(A)\circ E_{11}=0italic_ϕ ( italic_A ) ∘ italic_E start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT = 0, which implies ϕ(A)E11perpendicular-toitalic-ϕ𝐴subscript𝐸11\phi(A)\perp E_{11}italic_ϕ ( italic_A ) ⟂ italic_E start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT. So, we can define a Jordan embedding ψ:𝒜n1Mn1:𝜓subscript𝒜𝑛1subscript𝑀𝑛1\psi:\mathcal{A}_{n-1}\to M_{n-1}italic_ψ : caligraphic_A start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT → italic_M start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT, where 𝒜n1Mn1subscript𝒜𝑛1subscript𝑀𝑛1\mathcal{A}_{n-1}\subseteq M_{n-1}caligraphic_A start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT ⊆ italic_M start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT is a block upper-triangular subalgebra, by

ϕ([000A])=[000ψ(A)].italic-ϕmatrix000𝐴matrix000𝜓𝐴\phi\left(\begin{bmatrix}0&0\\0&A\end{bmatrix}\right)=\begin{bmatrix}0&0\\0&\psi(A)\end{bmatrix}.italic_ϕ ( [ start_ARG start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL italic_A end_CELL end_ROW end_ARG ] ) = [ start_ARG start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL italic_ψ ( italic_A ) end_CELL end_ROW end_ARG ] .

Now we apply the induction hypothesis to get that there exists an invertible TMn1𝑇subscript𝑀𝑛1T\in M_{n-1}italic_T ∈ italic_M start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT such that either ψ(A)=TAT1𝜓𝐴𝑇𝐴superscript𝑇1\psi(A)=TAT^{-1}italic_ψ ( italic_A ) = italic_T italic_A italic_T start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT for all A𝒜n1𝐴subscript𝒜𝑛1A\in\mathcal{A}_{n-1}italic_A ∈ caligraphic_A start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT or, ψ(A)=TAtT1𝜓𝐴𝑇superscript𝐴𝑡superscript𝑇1\psi(A)=TA^{t}T^{-1}italic_ψ ( italic_A ) = italic_T italic_A start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_T start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT for all A𝒜n1𝐴subscript𝒜𝑛1A\in\mathcal{A}_{n-1}italic_A ∈ caligraphic_A start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT. By passing to the map diag(1,T)1ϕ()diag(1,T)\operatorname{diag}(1,T)^{-1}\phi(\,\cdot\,)\operatorname{diag}(1,T)roman_diag ( 1 , italic_T ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_ϕ ( ⋅ ) roman_diag ( 1 , italic_T ), we can further take T𝑇Titalic_T to be identity matrix in Mn1subscript𝑀𝑛1M_{n-1}italic_M start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT and therefore, ϕitalic-ϕ\phiitalic_ϕ fixes all diagonal matrices. In particular, ϕ(Eii)=Eiiitalic-ϕsubscript𝐸𝑖𝑖subscript𝐸𝑖𝑖\phi(E_{ii})=E_{ii}italic_ϕ ( italic_E start_POSTSUBSCRIPT italic_i italic_i end_POSTSUBSCRIPT ) = italic_E start_POSTSUBSCRIPT italic_i italic_i end_POSTSUBSCRIPT, for all 1in1𝑖𝑛1\leq i\leq n1 ≤ italic_i ≤ italic_n. By linearity, it suffices to check that there is an invertible (diagonal in fact by our last assumption) matrix TMn𝑇subscript𝑀𝑛T\in M_{n}italic_T ∈ italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT such that ϕ(Eij)=TEijT1italic-ϕsubscript𝐸𝑖𝑗𝑇subscript𝐸𝑖𝑗superscript𝑇1\phi(E_{ij})=TE_{ij}T^{-1}italic_ϕ ( italic_E start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ) = italic_T italic_E start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT italic_T start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT for all 1i,jnformulae-sequence1𝑖𝑗𝑛1\leq i,j\leq n1 ≤ italic_i , italic_j ≤ italic_n or, ϕ(Eij)=TEjiT1italic-ϕsubscript𝐸𝑖𝑗𝑇subscript𝐸𝑗𝑖superscript𝑇1\phi(E_{ij})=TE_{ji}T^{-1}italic_ϕ ( italic_E start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ) = italic_T italic_E start_POSTSUBSCRIPT italic_j italic_i end_POSTSUBSCRIPT italic_T start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT for all 1i,jnformulae-sequence1𝑖𝑗𝑛1\leq i,j\leq n1 ≤ italic_i , italic_j ≤ italic_n.

Suppose that Eij𝒜subscript𝐸𝑖𝑗𝒜E_{ij}\in\mathcal{A}italic_E start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ∈ caligraphic_A, ij𝑖𝑗i\neq jitalic_i ≠ italic_j. We claim that ϕ(Eij)=αijEij+βijEjiitalic-ϕsubscript𝐸𝑖𝑗subscript𝛼𝑖𝑗subscript𝐸𝑖𝑗subscript𝛽𝑖𝑗subscript𝐸𝑗𝑖\phi(E_{ij})=\alpha_{ij}E_{ij}+\beta_{ij}E_{ji}italic_ϕ ( italic_E start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ) = italic_α start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT + italic_β start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT italic_j italic_i end_POSTSUBSCRIPT, where exactly one of αijsubscript𝛼𝑖𝑗\alpha_{ij}italic_α start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT and βijsubscript𝛽𝑖𝑗\beta_{ij}italic_β start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT is non-zero. When n>2𝑛2n>2italic_n > 2, we first use that for every k{i,j}𝑘𝑖𝑗k\notin\{i,j\}italic_k ∉ { italic_i , italic_j }, 0=ϕ(EijEkk)=ϕ(Eij)Ekk0italic-ϕsubscript𝐸𝑖𝑗subscript𝐸𝑘𝑘italic-ϕsubscript𝐸𝑖𝑗subscript𝐸𝑘𝑘0=\phi(E_{ij}\circ E_{kk})=\phi(E_{ij})\circ E_{kk}0 = italic_ϕ ( italic_E start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ∘ italic_E start_POSTSUBSCRIPT italic_k italic_k end_POSTSUBSCRIPT ) = italic_ϕ ( italic_E start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ) ∘ italic_E start_POSTSUBSCRIPT italic_k italic_k end_POSTSUBSCRIPT. So, for n2𝑛2n\geq 2italic_n ≥ 2 we have ϕ(Eij)span{Eii,Eij,Eji,Ejj}italic-ϕsubscript𝐸𝑖𝑗spansubscript𝐸𝑖𝑖subscript𝐸𝑖𝑗subscript𝐸𝑗𝑖subscript𝐸𝑗𝑗\phi(E_{ij})\in\mathrm{span}\{E_{ii},E_{ij},E_{ji},E_{jj}\}italic_ϕ ( italic_E start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ) ∈ roman_span { italic_E start_POSTSUBSCRIPT italic_i italic_i end_POSTSUBSCRIPT , italic_E start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT , italic_E start_POSTSUBSCRIPT italic_j italic_i end_POSTSUBSCRIPT , italic_E start_POSTSUBSCRIPT italic_j italic_j end_POSTSUBSCRIPT }. From 0=ϕ(EijEij)=2ϕ(Eij)20italic-ϕsubscript𝐸𝑖𝑗subscript𝐸𝑖𝑗2italic-ϕsuperscriptsubscript𝐸𝑖𝑗20=\phi(E_{ij}\circ E_{ij})=2\phi(E_{ij})^{2}0 = italic_ϕ ( italic_E start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ∘ italic_E start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ) = 2 italic_ϕ ( italic_E start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT we see that ϕ(Eij)italic-ϕsubscript𝐸𝑖𝑗\phi(E_{ij})italic_ϕ ( italic_E start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ) is a rank-one nilpotent as ϕitalic-ϕ\phiitalic_ϕ is injective.Now, the claim follows from

ϕ(Eij)=ϕ(EijEii)=ϕ(Eij)Eii,italic-ϕsubscript𝐸𝑖𝑗italic-ϕsubscript𝐸𝑖𝑗subscript𝐸𝑖𝑖italic-ϕsubscript𝐸𝑖𝑗subscript𝐸𝑖𝑖\phi(E_{ij})=\phi(E_{ij}\circ E_{ii})=\phi(E_{ij})\circ E_{ii},italic_ϕ ( italic_E start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ) = italic_ϕ ( italic_E start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ∘ italic_E start_POSTSUBSCRIPT italic_i italic_i end_POSTSUBSCRIPT ) = italic_ϕ ( italic_E start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ) ∘ italic_E start_POSTSUBSCRIPT italic_i italic_i end_POSTSUBSCRIPT ,

since this means that ϕ(Eij)italic-ϕsubscript𝐸𝑖𝑗\phi(E_{ij})italic_ϕ ( italic_E start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ) is supported in the i𝑖iitalic_i-th row and column. Therefore, ϕ(Eij)jj=0italic-ϕsubscriptsubscript𝐸𝑖𝑗𝑗𝑗0\phi(E_{ij})_{jj}=0italic_ϕ ( italic_E start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_j italic_j end_POSTSUBSCRIPT = 0 and hence the other eigenvalue ϕ(Eij)iiitalic-ϕsubscriptsubscript𝐸𝑖𝑗𝑖𝑖\phi(E_{ij})_{ii}italic_ϕ ( italic_E start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_i italic_i end_POSTSUBSCRIPT also has to be zero.

So, further suppose n3𝑛3n\geq 3italic_n ≥ 3. If ψ(A)=A𝜓𝐴𝐴\psi(A)=Aitalic_ψ ( italic_A ) = italic_A for every A𝒜n1𝐴subscript𝒜𝑛1A\in\mathcal{A}_{n-1}italic_A ∈ caligraphic_A start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT then we claim that ϕ(E1j)=α1jE1jitalic-ϕsubscript𝐸1𝑗subscript𝛼1𝑗subscript𝐸1𝑗\phi(E_{1j})=\alpha_{1j}E_{1j}italic_ϕ ( italic_E start_POSTSUBSCRIPT 1 italic_j end_POSTSUBSCRIPT ) = italic_α start_POSTSUBSCRIPT 1 italic_j end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT 1 italic_j end_POSTSUBSCRIPT for all 1<jn1𝑗𝑛1<j\leq n1 < italic_j ≤ italic_n. If not, first suppose that ϕ(E1k)=β1kEk1italic-ϕsubscript𝐸1𝑘subscript𝛽1𝑘subscript𝐸𝑘1\phi(E_{1k})=\beta_{1k}E_{k1}italic_ϕ ( italic_E start_POSTSUBSCRIPT 1 italic_k end_POSTSUBSCRIPT ) = italic_β start_POSTSUBSCRIPT 1 italic_k end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT italic_k 1 end_POSTSUBSCRIPT for some 1<k<n1𝑘𝑛1<k<n1 < italic_k < italic_n. Then ϕ(E1kEkn)=ϕ(E1n)italic-ϕsubscript𝐸1𝑘subscript𝐸𝑘𝑛italic-ϕsubscript𝐸1𝑛\phi(E_{1k}\circ E_{kn})=\phi(E_{1n})italic_ϕ ( italic_E start_POSTSUBSCRIPT 1 italic_k end_POSTSUBSCRIPT ∘ italic_E start_POSTSUBSCRIPT italic_k italic_n end_POSTSUBSCRIPT ) = italic_ϕ ( italic_E start_POSTSUBSCRIPT 1 italic_n end_POSTSUBSCRIPT ) but ϕ(E1k)ϕ(Ekn)=β1kEk1Ekn=0italic-ϕsubscript𝐸1𝑘italic-ϕsubscript𝐸𝑘𝑛subscript𝛽1𝑘subscript𝐸𝑘1subscript𝐸𝑘𝑛0\phi(E_{1k})\circ\phi(E_{kn})=\beta_{1k}E_{k1}\circ E_{kn}=0italic_ϕ ( italic_E start_POSTSUBSCRIPT 1 italic_k end_POSTSUBSCRIPT ) ∘ italic_ϕ ( italic_E start_POSTSUBSCRIPT italic_k italic_n end_POSTSUBSCRIPT ) = italic_β start_POSTSUBSCRIPT 1 italic_k end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT italic_k 1 end_POSTSUBSCRIPT ∘ italic_E start_POSTSUBSCRIPT italic_k italic_n end_POSTSUBSCRIPT = 0, a contradiction. Secondly, the case ϕ(E1n)=β1nEn1italic-ϕsubscript𝐸1𝑛subscript𝛽1𝑛subscript𝐸𝑛1\phi(E_{1n})=\beta_{1n}E_{n1}italic_ϕ ( italic_E start_POSTSUBSCRIPT 1 italic_n end_POSTSUBSCRIPT ) = italic_β start_POSTSUBSCRIPT 1 italic_n end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT italic_n 1 end_POSTSUBSCRIPT can be eliminated by comparing ϕ(E1nE1,n1)=0italic-ϕsubscript𝐸1𝑛subscript𝐸1𝑛10\phi(E_{1n}\circ E_{1,n-1})=0italic_ϕ ( italic_E start_POSTSUBSCRIPT 1 italic_n end_POSTSUBSCRIPT ∘ italic_E start_POSTSUBSCRIPT 1 , italic_n - 1 end_POSTSUBSCRIPT ) = 0 and ϕ(E1n)ϕ(E1,n1)=β1nEn1E1,n1=β1nEn,n1italic-ϕsubscript𝐸1𝑛italic-ϕsubscript𝐸1𝑛1subscript𝛽1𝑛subscript𝐸𝑛1subscript𝐸1𝑛1subscript𝛽1𝑛subscript𝐸𝑛𝑛1\phi(E_{1n})\circ\phi(E_{1,n-1})=\beta_{1n}E_{n1}\circ E_{1,n-1}=\beta_{1n}E_{%n,n-1}italic_ϕ ( italic_E start_POSTSUBSCRIPT 1 italic_n end_POSTSUBSCRIPT ) ∘ italic_ϕ ( italic_E start_POSTSUBSCRIPT 1 , italic_n - 1 end_POSTSUBSCRIPT ) = italic_β start_POSTSUBSCRIPT 1 italic_n end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT italic_n 1 end_POSTSUBSCRIPT ∘ italic_E start_POSTSUBSCRIPT 1 , italic_n - 1 end_POSTSUBSCRIPT = italic_β start_POSTSUBSCRIPT 1 italic_n end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT italic_n , italic_n - 1 end_POSTSUBSCRIPT. By a diagonal similarity implemented by diag(1,α12,,α1n)𝒟n×diag1subscript𝛼12subscript𝛼1𝑛superscriptsubscript𝒟𝑛\operatorname{diag}(1,\alpha_{12},\ldots,\alpha_{1n})\in\mathcal{D}_{n}^{\times}roman_diag ( 1 , italic_α start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT , … , italic_α start_POSTSUBSCRIPT 1 italic_n end_POSTSUBSCRIPT ) ∈ caligraphic_D start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT, we can achieve that ϕ(E1j)=E1jitalic-ϕsubscript𝐸1𝑗subscript𝐸1𝑗\phi(E_{1j})=E_{1j}italic_ϕ ( italic_E start_POSTSUBSCRIPT 1 italic_j end_POSTSUBSCRIPT ) = italic_E start_POSTSUBSCRIPT 1 italic_j end_POSTSUBSCRIPT for every j=2,,n𝑗2𝑛j=2,\dots,nitalic_j = 2 , … , italic_n.

If 𝒜=𝒯n𝒜subscript𝒯𝑛\mathcal{A}=\mathcal{T}_{n}caligraphic_A = caligraphic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, we are done, else, for every Ej1𝒜subscript𝐸𝑗1𝒜E_{j1}\in\mathcal{A}italic_E start_POSTSUBSCRIPT italic_j 1 end_POSTSUBSCRIPT ∈ caligraphic_A with 2jn2𝑗𝑛2\leq j\leq n2 ≤ italic_j ≤ italic_n, we have that ϕ(E1jEj1)=E11+Ejjitalic-ϕsubscript𝐸1𝑗subscript𝐸𝑗1subscript𝐸11subscript𝐸𝑗𝑗\phi(E_{1j}\circ E_{j1})=E_{11}+E_{jj}italic_ϕ ( italic_E start_POSTSUBSCRIPT 1 italic_j end_POSTSUBSCRIPT ∘ italic_E start_POSTSUBSCRIPT italic_j 1 end_POSTSUBSCRIPT ) = italic_E start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT + italic_E start_POSTSUBSCRIPT italic_j italic_j end_POSTSUBSCRIPT, so E1j(αj1Ej1+βj1E1j)=αj1(E11+Ejj)subscript𝐸1𝑗subscript𝛼𝑗1subscript𝐸𝑗1subscript𝛽𝑗1subscript𝐸1𝑗subscript𝛼𝑗1subscript𝐸11subscript𝐸𝑗𝑗E_{1j}\circ(\alpha_{j1}E_{j1}+\beta_{j1}E_{1j})=\alpha_{j1}(E_{11}+E_{jj})italic_E start_POSTSUBSCRIPT 1 italic_j end_POSTSUBSCRIPT ∘ ( italic_α start_POSTSUBSCRIPT italic_j 1 end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT italic_j 1 end_POSTSUBSCRIPT + italic_β start_POSTSUBSCRIPT italic_j 1 end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT 1 italic_j end_POSTSUBSCRIPT ) = italic_α start_POSTSUBSCRIPT italic_j 1 end_POSTSUBSCRIPT ( italic_E start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT + italic_E start_POSTSUBSCRIPT italic_j italic_j end_POSTSUBSCRIPT ) gives αj1=1subscript𝛼𝑗11\alpha_{j1}=1italic_α start_POSTSUBSCRIPT italic_j 1 end_POSTSUBSCRIPT = 1 and hence βj1=0subscript𝛽𝑗10\beta_{j1}=0italic_β start_POSTSUBSCRIPT italic_j 1 end_POSTSUBSCRIPT = 0.

The anti-multiplicative case of ψ𝜓\psiitalic_ψ can be considered by replacing the map ϕitalic-ϕ\phiitalic_ϕ with the map ϕ()titalic-ϕsuperscript𝑡\phi(\cdot)^{t}italic_ϕ ( ⋅ ) start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT. Finally, the linearity of ϕitalic-ϕ\phiitalic_ϕ closes the proof.∎

Corollary 3.1.

Let 𝒜𝒜\mathcal{A}caligraphic_A and \mathcal{B}caligraphic_B be block-upper-triangular subalgebras of Mnsubscript𝑀𝑛M_{n}italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT. Suppose that ϕ:𝒜:italic-ϕ𝒜\phi:\mathcal{A}\to\mathcal{B}italic_ϕ : caligraphic_A → caligraphic_B is a Jordan embedding. Then one of the following is true:

  1. (a)

    𝒜𝒜\mathcal{A}\subseteq\mathcal{B}caligraphic_A ⊆ caligraphic_B and there exists T×𝑇superscriptT\in\mathcal{B}^{\times}italic_T ∈ caligraphic_B start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT such that ϕ(X)=TXT1italic-ϕ𝑋𝑇𝑋superscript𝑇1\phi(X)=TXT^{-1}italic_ϕ ( italic_X ) = italic_T italic_X italic_T start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT for all X𝒜𝑋𝒜X\in\mathcal{A}italic_X ∈ caligraphic_A,

  2. (b)

    𝒜superscript𝒜direct-product\mathcal{A}^{\odot}\subseteq\mathcal{B}caligraphic_A start_POSTSUPERSCRIPT ⊙ end_POSTSUPERSCRIPT ⊆ caligraphic_B and there exists T×𝑇superscriptT\in\mathcal{B}^{\times}italic_T ∈ caligraphic_B start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT such that ϕ(X)=TXT1italic-ϕ𝑋𝑇superscript𝑋direct-productsuperscript𝑇1\phi(X)=TX^{\odot}T^{-1}italic_ϕ ( italic_X ) = italic_T italic_X start_POSTSUPERSCRIPT ⊙ end_POSTSUPERSCRIPT italic_T start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT for all X𝒜𝑋𝒜X\in\mathcal{A}italic_X ∈ caligraphic_A.

Proof.

We will show that Eij𝒜subscript𝐸𝑖𝑗𝒜E_{ij}\in\mathcal{A}italic_E start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ∈ caligraphic_A implies Eijsubscript𝐸𝑖𝑗E_{ij}\in\mathcal{B}italic_E start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ∈ caligraphic_B for all Eij𝒜subscript𝐸𝑖𝑗𝒜E_{ij}\in\mathcal{A}italic_E start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ∈ caligraphic_A or, Eij𝒜subscript𝐸𝑖𝑗superscript𝒜direct-productE_{ij}\in\mathcal{A}^{\odot}italic_E start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ∈ caligraphic_A start_POSTSUPERSCRIPT ⊙ end_POSTSUPERSCRIPT implies Eijsubscript𝐸𝑖𝑗E_{ij}\in\mathcal{B}italic_E start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ∈ caligraphic_B for all Eij𝒜subscript𝐸𝑖𝑗superscript𝒜direct-productE_{ij}\in\mathcal{A}^{\odot}italic_E start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ∈ caligraphic_A start_POSTSUPERSCRIPT ⊙ end_POSTSUPERSCRIPT. We use mathematical induction again. There is nothing to do when n=1𝑛1n=1italic_n = 1, so for the induction step, assume n2𝑛2n\geq 2italic_n ≥ 2 and that the claim already holds for n1𝑛1n-1italic_n - 1. Let 𝒜=𝒜k1,,kp𝒜subscript𝒜subscript𝑘1subscript𝑘𝑝\mathcal{A}=\mathcal{A}_{k_{1},\dots,k_{p}}caligraphic_A = caligraphic_A start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_k start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUBSCRIPT and =𝒜l1,,lqsubscript𝒜subscript𝑙1subscript𝑙𝑞\mathcal{B}=\mathcal{A}_{l_{1},\dots,l_{q}}caligraphic_B = caligraphic_A start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_l start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT end_POSTSUBSCRIPT.

Assume that ϕitalic-ϕ\phiitalic_ϕ is of the form ϕ(A)=TAT1italic-ϕ𝐴𝑇𝐴superscript𝑇1\phi(A)=TAT^{-1}italic_ϕ ( italic_A ) = italic_T italic_A italic_T start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT for some fixed invertible matrix TMn𝑇subscript𝑀𝑛T\in M_{n}italic_T ∈ italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT. It is not difficult to see, that ϕ(Eii)=SEπ(i)π(i)S1italic-ϕsubscript𝐸𝑖𝑖𝑆subscript𝐸𝜋𝑖𝜋𝑖superscript𝑆1\phi(E_{ii})=SE_{\pi(i)\pi(i)}S^{-1}italic_ϕ ( italic_E start_POSTSUBSCRIPT italic_i italic_i end_POSTSUBSCRIPT ) = italic_S italic_E start_POSTSUBSCRIPT italic_π ( italic_i ) italic_π ( italic_i ) end_POSTSUBSCRIPT italic_S start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT for some invertible matrix S𝑆S\in\mathcal{B}italic_S ∈ caligraphic_B and a permutation π𝜋\piitalic_π. Indeed, since ϕ(Δ)=TΔT1italic-ϕΔ𝑇Δsuperscript𝑇1\phi(\Delta)=T\Delta T^{-1}italic_ϕ ( roman_Δ ) = italic_T roman_Δ italic_T start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, by Lemma 2.2, there exists an S×𝑆superscriptS\in\mathcal{B}^{\times}italic_S ∈ caligraphic_B start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT such that TΔT1=SΔS1𝑇Δsuperscript𝑇1𝑆Δsuperscript𝑆1T\Delta T^{-1}=S\Delta S^{-1}italic_T roman_Δ italic_T start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = italic_S roman_Δ italic_S start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT. For every 1in1𝑖𝑛1\leq i\leq n1 ≤ italic_i ≤ italic_n, Eiisubscript𝐸𝑖𝑖E_{ii}italic_E start_POSTSUBSCRIPT italic_i italic_i end_POSTSUBSCRIPT commutes with ΔΔ\Deltaroman_Δ and so, ϕ(Eii)=SEπ(i)π(i)S1italic-ϕsubscript𝐸𝑖𝑖𝑆subscript𝐸𝜋𝑖𝜋𝑖superscript𝑆1\phi(E_{ii})=SE_{\pi(i)\pi(i)}S^{-1}italic_ϕ ( italic_E start_POSTSUBSCRIPT italic_i italic_i end_POSTSUBSCRIPT ) = italic_S italic_E start_POSTSUBSCRIPT italic_π ( italic_i ) italic_π ( italic_i ) end_POSTSUBSCRIPT italic_S start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT for some permutation π𝜋\piitalic_π on the set {1,2,,n}12𝑛\{1,2,\dots,n\}{ 1 , 2 , … , italic_n }.We may and we do suppose that S=I𝑆𝐼S=Iitalic_S = italic_I. For each fixed i𝑖iitalic_i, 1ik11𝑖subscript𝑘11\leq i\leq k_{1}1 ≤ italic_i ≤ italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, span{Eij:j=1,,n}span:subscript𝐸𝑖𝑗𝑗1𝑛\operatorname{span}\{E_{ij}:j=1,\dots,n\}roman_span { italic_E start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT : italic_j = 1 , … , italic_n } is an n𝑛nitalic_n-dimensional vector space of rank-one matrices living in only one row, which is mapped into span{Eπ(i),s:s=1,,n}span:subscript𝐸𝜋𝑖𝑠𝑠1𝑛\operatorname{span}\{E_{\pi(i),s}:s=1,\dots,n\}roman_span { italic_E start_POSTSUBSCRIPT italic_π ( italic_i ) , italic_s end_POSTSUBSCRIPT : italic_s = 1 , … , italic_n }. As ϕitalic-ϕ\phiitalic_ϕ is one-to-one, π(i){1,2,,l1}𝜋𝑖12subscript𝑙1\pi(i)\in\{1,2,\dots,l_{1}\}italic_π ( italic_i ) ∈ { 1 , 2 , … , italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT } where l1k1subscript𝑙1subscript𝑘1l_{1}\geq k_{1}italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≥ italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT. Therefore, by a similarity induced by a permutation matrix in \mathcal{B}caligraphic_B we can achieve that all matrices supported only in the first row are mapped by ϕitalic-ϕ\phiitalic_ϕ to the matrices of the same kind, i.e. π(1)=1𝜋11\pi(1)=1italic_π ( 1 ) = 1 with no loss of generality. For all Ei1𝒜subscript𝐸𝑖1𝒜E_{i1}\in\mathcal{A}italic_E start_POSTSUBSCRIPT italic_i 1 end_POSTSUBSCRIPT ∈ caligraphic_A we have that ϕ(Ei1)=Eπ(i)1italic-ϕsubscript𝐸𝑖1subscript𝐸𝜋𝑖1\phi(E_{i1})=E_{\pi(i)1}\in\mathcal{B}italic_ϕ ( italic_E start_POSTSUBSCRIPT italic_i 1 end_POSTSUBSCRIPT ) = italic_E start_POSTSUBSCRIPT italic_π ( italic_i ) 1 end_POSTSUBSCRIPT ∈ caligraphic_B for every 1ik11𝑖subscript𝑘11\leq i\leq k_{1}1 ≤ italic_i ≤ italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT.

Now we can define a Jordan embedding ψ:𝒜:𝜓superscript𝒜superscript\psi:\mathcal{A}^{\prime}\to\mathcal{B}^{\prime}italic_ψ : caligraphic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT → caligraphic_B start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT, where 𝒜,Mn1superscript𝒜superscriptsubscript𝑀𝑛1\mathcal{A}^{\prime},\,\mathcal{B}^{\prime}\subseteq M_{n-1}caligraphic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , caligraphic_B start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ⊆ italic_M start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT are block upper-triangular algebras, by

ϕ([000A])=[000ψ(A)],A𝒜,formulae-sequenceitalic-ϕmatrix000𝐴matrix000𝜓𝐴𝐴superscript𝒜\phi\left(\begin{bmatrix}0&0\\0&A\end{bmatrix}\right)=\begin{bmatrix}0&0\\0&\psi(A)\end{bmatrix}\in\mathcal{B},\ \ \ A\in\mathcal{A}^{\prime},italic_ϕ ( [ start_ARG start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL italic_A end_CELL end_ROW end_ARG ] ) = [ start_ARG start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL italic_ψ ( italic_A ) end_CELL end_ROW end_ARG ] ∈ caligraphic_B , italic_A ∈ caligraphic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ,

which, by induction hypothesis, gives that 𝒜superscript𝒜superscript\mathcal{A}^{\prime}\subseteq\mathcal{B}^{\prime}caligraphic_A start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ⊆ caligraphic_B start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT so, for every Eij𝒜subscript𝐸𝑖𝑗𝒜E_{ij}\in\mathcal{A}italic_E start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ∈ caligraphic_A we have that Eijsubscript𝐸𝑖𝑗E_{ij}\in\mathcal{B}italic_E start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ∈ caligraphic_B for all i,j𝑖𝑗i,jitalic_i , italic_j such that i,j1𝑖𝑗1i,j\neq 1italic_i , italic_j ≠ 1. By linearity and the fact that ϕitalic-ϕ\phiitalic_ϕ preserves also the matrices supported in the first row and those supported in the first column, we deduce 𝒜𝒜\mathcal{A}\subseteq\mathcal{B}caligraphic_A ⊆ caligraphic_B. That T×𝑇superscriptT\in\mathcal{B}^{\times}italic_T ∈ caligraphic_B start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT is now almost obvious.

For the remaining case, when ϕitalic-ϕ\phiitalic_ϕ is antimultiplicative, we may instead consider the multiplicative linear map Aϕ(A)maps-to𝐴italic-ϕsuperscript𝐴direct-productA\mapsto\phi(A^{\odot})italic_A ↦ italic_ϕ ( italic_A start_POSTSUPERSCRIPT ⊙ end_POSTSUPERSCRIPT ), A𝒜𝐴superscript𝒜direct-productA\in\mathcal{A}^{\odot}italic_A ∈ caligraphic_A start_POSTSUPERSCRIPT ⊙ end_POSTSUPERSCRIPT, which ends the proof by applying the above consideration.∎

The next simple example shows that the image of a Jordan embedding ϕ:𝒜Mn:italic-ϕ𝒜subscript𝑀𝑛\phi:\mathcal{A}\to M_{n}italic_ϕ : caligraphic_A → italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, where 𝒜𝒜\mathcal{A}caligraphic_A is a block-upper-triangular subalgebra of Mnsubscript𝑀𝑛M_{n}italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, needs not to be a block-upper-triangular subalgebra of Mnsubscript𝑀𝑛M_{n}italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT.

Example 3.2.

Consider the algebra monomorphism ϕ:𝒯3M3:italic-ϕsubscript𝒯3subscript𝑀3\phi:\mathcal{T}_{3}\to M_{3}italic_ϕ : caligraphic_T start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT → italic_M start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT given by ϕ(X)=JXJ1italic-ϕ𝑋𝐽𝑋superscript𝐽1\phi(X)=JXJ^{-1}italic_ϕ ( italic_X ) = italic_J italic_X italic_J start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT where JM3×𝐽superscriptsubscript𝑀3J\in M_{3}^{\times}italic_J ∈ italic_M start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT is from Lemma 2.1.The image of ϕitalic-ϕ\phiitalic_ϕ is precisely the algebra of 3×3333\times 33 × 3 lower-triangular matrices, hence not equal to 𝒯3subscript𝒯3\mathcal{T}_{3}caligraphic_T start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT nor 𝒯3=𝒯3superscriptsubscript𝒯3direct-productsubscript𝒯3\mathcal{T}_{3}^{\odot}=\mathcal{T}_{3}caligraphic_T start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ⊙ end_POSTSUPERSCRIPT = caligraphic_T start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT.

Corollary 3.3.

Let 𝒜k1,,kpsubscript𝒜subscript𝑘1subscript𝑘𝑝\mathcal{A}_{k_{1},\ldots,k_{p}}caligraphic_A start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_k start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUBSCRIPT and 𝒜l1,,lqsubscript𝒜subscript𝑙1subscript𝑙𝑞\mathcal{A}_{l_{1},\ldots,l_{q}}caligraphic_A start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_l start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT end_POSTSUBSCRIPT be block upper-triangular subalgebras of Mnsubscript𝑀𝑛M_{n}italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT.

  1. (a)

    𝒜k1,,kpsubscript𝒜subscript𝑘1subscript𝑘𝑝\mathcal{A}_{k_{1},\ldots,k_{p}}caligraphic_A start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_k start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUBSCRIPT and 𝒜l1,,lqsubscript𝒜subscript𝑙1subscript𝑙𝑞\mathcal{A}_{l_{1},\ldots,l_{q}}caligraphic_A start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_l start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT end_POSTSUBSCRIPT are algebra-isomorphic if and only if (k1,,kp)=(l1,,lq)subscript𝑘1subscript𝑘𝑝subscript𝑙1subscript𝑙𝑞(k_{1},\ldots,k_{p})=(l_{1},\ldots,l_{q})( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_k start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) = ( italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_l start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ).

  2. (b)

    𝒜k1,,kpsubscript𝒜subscript𝑘1subscript𝑘𝑝\mathcal{A}_{k_{1},\ldots,k_{p}}caligraphic_A start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_k start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUBSCRIPT and 𝒜l1,,lqsubscript𝒜subscript𝑙1subscript𝑙𝑞\mathcal{A}_{l_{1},\ldots,l_{q}}caligraphic_A start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_l start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT end_POSTSUBSCRIPT are algebra-antiisomorphic if and only if (k1,,kp)=(lq,,l1)subscript𝑘1subscript𝑘𝑝subscript𝑙𝑞subscript𝑙1(k_{1},\ldots,k_{p})=(l_{q},\ldots,l_{1})( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_k start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) = ( italic_l start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT , … , italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ).

  3. (c)

    𝒜k1,,kpsubscript𝒜subscript𝑘1subscript𝑘𝑝\mathcal{A}_{k_{1},\ldots,k_{p}}caligraphic_A start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_k start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUBSCRIPT and 𝒜l1,,lqsubscript𝒜subscript𝑙1subscript𝑙𝑞\mathcal{A}_{l_{1},\ldots,l_{q}}caligraphic_A start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_l start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT end_POSTSUBSCRIPT are Jordan-isomorphic if and only if (k1,,kp)=(l1,,lq)subscript𝑘1subscript𝑘𝑝subscript𝑙1subscript𝑙𝑞(k_{1},\ldots,k_{p})=(l_{1},\ldots,l_{q})( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_k start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) = ( italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_l start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ) or (k1,,kp)=(lq,,l1)subscript𝑘1subscript𝑘𝑝subscript𝑙𝑞subscript𝑙1(k_{1},\ldots,k_{p})=(l_{q},\ldots,l_{1})( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_k start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) = ( italic_l start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT , … , italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ).

Proof.

This follows directly from Corollary 3.1.∎

4. Proof of the main result

We now proceed with the proof of our main result, namely Theorem 1.4. We begin with the following auxiliary fact:

Lemma 4.1.

Let 𝒜𝒜\mathcal{A}caligraphic_A be a block upper-triangular subalgebra of Mnsubscript𝑀𝑛M_{n}italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT and ϕ:𝒜Mn:italic-ϕ𝒜subscript𝑀𝑛\phi:\mathcal{A}\to M_{n}italic_ϕ : caligraphic_A → italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT a continuous map satisfying σ(A)σ(ϕ(A))𝜎𝐴𝜎italic-ϕ𝐴\sigma(A)\subseteq\sigma(\phi(A))italic_σ ( italic_A ) ⊆ italic_σ ( italic_ϕ ( italic_A ) ) for every matrix A𝐴Aitalic_A in some open (relative to 𝒜𝒜\mathcal{A}caligraphic_A) set 𝒰𝒜𝒰𝒜\,\mathcal{U}\subseteq\mathcal{A}caligraphic_U ⊆ caligraphic_A. Then pA=pϕ(A)subscript𝑝𝐴subscript𝑝italic-ϕ𝐴p_{A}=p_{\phi(A)}italic_p start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT = italic_p start_POSTSUBSCRIPT italic_ϕ ( italic_A ) end_POSTSUBSCRIPT for all A𝒰𝐴𝒰A\in\mathcal{U}italic_A ∈ caligraphic_U, thus ϕitalic-ϕ\phiitalic_ϕ is spectrum preserving on 𝒰𝒰\,\mathcal{U}caligraphic_U and in turn, the algebraic multiplicities of all eigenvalues are also preserved by ϕitalic-ϕ\phiitalic_ϕ.

Proof.

The assertion is clearly true on every set 𝒰𝒰\mathcal{E}\subset\mathcal{U}caligraphic_E ⊂ caligraphic_U of all matrices with n𝑛nitalic_n distinct eigenvalues.By applying Schur’s triangularization on each diagonal block, every matrix A𝒰𝐴𝒰A\in\mathcal{U}italic_A ∈ caligraphic_U can be represented as A=S(Λ+N)S1𝐴𝑆Λ𝑁superscript𝑆1A=S(\Lambda+N)S^{-1}italic_A = italic_S ( roman_Λ + italic_N ) italic_S start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT for some diagonal matrix ΛΛ\Lambdaroman_Λ, an invertible matrix S𝒜𝑆𝒜S\in\mathcal{A}italic_S ∈ caligraphic_A and a strictly upper-triangular matrix N𝑁Nitalic_N. Define a family of matrices Av=S(Λ+E(v)+N)S1subscript𝐴𝑣𝑆Λ𝐸𝑣𝑁superscript𝑆1A_{v}=S(\Lambda+E(v)+N)S^{-1}italic_A start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT = italic_S ( roman_Λ + italic_E ( italic_v ) + italic_N ) italic_S start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT where E(v)=diag(v1,,vn)𝐸𝑣diagsubscript𝑣1subscript𝑣𝑛E(v)=\mathrm{diag}(v_{1},\dots,v_{n})italic_E ( italic_v ) = roman_diag ( italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_v start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ), and the diagonal entries of Λ+E(v)=diag(λ1+v1,,λn+vn)Λ𝐸𝑣diagsubscript𝜆1subscript𝑣1subscript𝜆𝑛subscript𝑣𝑛\Lambda+E(v)=\mathrm{diag}(\lambda_{1}+v_{1},\dots,\lambda_{n}+v_{n})roman_Λ + italic_E ( italic_v ) = roman_diag ( italic_λ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_λ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) are all distinct whenever v=(v1,,vn)norm𝑣normsubscript𝑣1subscript𝑣𝑛{\left\|v\right\|}={\left\|(v_{1},\dots,v_{n})\right\|}∥ italic_v ∥ = ∥ ( italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_v start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ∥ is sufficiently small.Clearly, A=limv0Av𝐴subscript𝑣0subscript𝐴𝑣A=\lim_{v\to 0}A_{v}italic_A = roman_lim start_POSTSUBSCRIPT italic_v → 0 end_POSTSUBSCRIPT italic_A start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT and by continuity of ϕitalic-ϕ\phiitalic_ϕ and continuity of determinant

pA(x)subscript𝑝𝐴𝑥\displaystyle p_{A}(x)italic_p start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT ( italic_x )=det(AxI)=limv0det(AvxI)absentdet𝐴𝑥𝐼subscript𝑣0detsubscript𝐴𝑣𝑥𝐼\displaystyle=\mathrm{det}(A-xI)=\lim_{v\to 0}\mathrm{det}(A_{v}-xI)= roman_det ( italic_A - italic_x italic_I ) = roman_lim start_POSTSUBSCRIPT italic_v → 0 end_POSTSUBSCRIPT roman_det ( italic_A start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT - italic_x italic_I )
=limv0det(ϕ(Av)xI)=det(ϕ(A)xI)=pϕ(A)(x)absentsubscript𝑣0detitalic-ϕsubscript𝐴𝑣𝑥𝐼detitalic-ϕ𝐴𝑥𝐼subscript𝑝italic-ϕ𝐴𝑥\displaystyle=\lim_{v\to 0}\mathrm{det}(\phi(A_{v})-xI)=\mathrm{det}(\phi(A)-%xI)=p_{\phi(A)}(x)= roman_lim start_POSTSUBSCRIPT italic_v → 0 end_POSTSUBSCRIPT roman_det ( italic_ϕ ( italic_A start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT ) - italic_x italic_I ) = roman_det ( italic_ϕ ( italic_A ) - italic_x italic_I ) = italic_p start_POSTSUBSCRIPT italic_ϕ ( italic_A ) end_POSTSUBSCRIPT ( italic_x )

confirming the assertion of the Lemma.∎

We will need the following technical Lemma.

Lemma 4.2.

Every upper-triangular rank-one idempotent matrix R𝒯n𝑅subscript𝒯𝑛R\in\mathcal{T}_{n}italic_R ∈ caligraphic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT can be written as R=(ek+x)(ek+y)t𝑅subscript𝑒𝑘𝑥superscriptsubscript𝑒𝑘𝑦𝑡R=(e_{k}+x)(e_{k}+y)^{t}italic_R = ( italic_e start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + italic_x ) ( italic_e start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + italic_y ) start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT, where x=i=1k1xiei𝑥superscriptsubscript𝑖1𝑘1subscript𝑥𝑖subscript𝑒𝑖x=\sum_{i=1}^{k-1}x_{i}e_{i}italic_x = ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k - 1 end_POSTSUPERSCRIPT italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_e start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT, y=i=k+1nyiei𝑦superscriptsubscript𝑖𝑘1𝑛subscript𝑦𝑖subscript𝑒𝑖y=\sum_{i=k+1}^{n}y_{i}e_{i}italic_y = ∑ start_POSTSUBSCRIPT italic_i = italic_k + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_e start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT for some 1kn1𝑘𝑛1\leq k\leq n1 ≤ italic_k ≤ italic_n. It will be convenient to represent R𝑅Ritalic_R as

R=Tk(x)Sk(y)1EkkSk(y)Tk(x)1𝑅subscript𝑇𝑘𝑥subscript𝑆𝑘superscript𝑦1subscript𝐸𝑘𝑘subscript𝑆𝑘𝑦subscript𝑇𝑘superscript𝑥1R=T_{k}(x)S_{k}(y)^{-1}E_{kk}S_{k}(y)T_{k}(x)^{-1}italic_R = italic_T start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_x ) italic_S start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_y ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_E start_POSTSUBSCRIPT italic_k italic_k end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_y ) italic_T start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_x ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT

where

Sk(y)=I+ekyt,andTk(x)=I+xektformulae-sequencesubscript𝑆𝑘𝑦𝐼subscript𝑒𝑘superscript𝑦𝑡andsubscript𝑇𝑘𝑥𝐼𝑥superscriptsubscript𝑒𝑘𝑡S_{k}(y)=I+e_{k}y^{t},\qquad\text{ and }T_{k}(x)=I+xe_{k}^{t}italic_S start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_y ) = italic_I + italic_e start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_y start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT , and italic_T start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_x ) = italic_I + italic_x italic_e start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT

are upper-triangular matrices satisfying Sk(y)1=Sk(y)subscript𝑆𝑘superscript𝑦1subscript𝑆𝑘𝑦S_{k}(y)^{-1}=S_{k}(-y)italic_S start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_y ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = italic_S start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( - italic_y ) and Tk(x)1=Tk(x)subscript𝑇𝑘superscript𝑥1subscript𝑇𝑘𝑥T_{k}(x)^{-1}=T_{k}(-x)italic_T start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_x ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = italic_T start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( - italic_x ). Note that Tk(x)ei=eisubscript𝑇𝑘𝑥subscript𝑒𝑖subscript𝑒𝑖T_{k}(x)e_{i}=e_{i}italic_T start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_x ) italic_e start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_e start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT and eitSk(y)=eitsuperscriptsubscript𝑒𝑖𝑡subscript𝑆𝑘𝑦superscriptsubscript𝑒𝑖𝑡e_{i}^{t}S_{k}(y)=e_{i}^{t}italic_e start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_S start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_y ) = italic_e start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT when ik𝑖𝑘i\neq kitalic_i ≠ italic_k. Moreover,

(4.1)Sk(y)1EiiSk(y)subscript𝑆𝑘superscript𝑦1subscript𝐸𝑖𝑖subscript𝑆𝑘𝑦\displaystyle S_{k}(y)^{-1}E_{ii}S_{k}(y)italic_S start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_y ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_E start_POSTSUBSCRIPT italic_i italic_i end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_y )={Ekk+ekyt,ifi=k,EiiyiEki,ifi>k,Eii,ifi<k,\displaystyle=\left\{\begin{matrix}E_{kk}+e_{k}y^{t},&\text{if}&i=k,\\E_{ii}-y_{i}E_{ki},&\text{if}&i>k,\\E_{ii},&\text{if}&i<k,\end{matrix}\right.= { start_ARG start_ROW start_CELL italic_E start_POSTSUBSCRIPT italic_k italic_k end_POSTSUBSCRIPT + italic_e start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_y start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT , end_CELL start_CELL if end_CELL start_CELL italic_i = italic_k , end_CELL end_ROW start_ROW start_CELL italic_E start_POSTSUBSCRIPT italic_i italic_i end_POSTSUBSCRIPT - italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT italic_k italic_i end_POSTSUBSCRIPT , end_CELL start_CELL if end_CELL start_CELL italic_i > italic_k , end_CELL end_ROW start_ROW start_CELL italic_E start_POSTSUBSCRIPT italic_i italic_i end_POSTSUBSCRIPT , end_CELL start_CELL if end_CELL start_CELL italic_i < italic_k , end_CELL end_ROW end_ARG
(4.2)Tk(x)EiiTk(x)1subscript𝑇𝑘𝑥subscript𝐸𝑖𝑖subscript𝑇𝑘superscript𝑥1\displaystyle T_{k}(x)E_{ii}T_{k}(x)^{-1}italic_T start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_x ) italic_E start_POSTSUBSCRIPT italic_i italic_i end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_x ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT={Ekk+xekt,ifi=k,EiixiEik,ifi<k,Eii,ifi>k.\displaystyle=\left\{\begin{matrix}E_{kk}+xe_{k}^{t},&\text{if}&i=k,\\E_{ii}-x_{i}E_{ik},&\text{if}&i<k,\\E_{ii},&\text{if}&i>k.\end{matrix}\right.= { start_ARG start_ROW start_CELL italic_E start_POSTSUBSCRIPT italic_k italic_k end_POSTSUBSCRIPT + italic_x italic_e start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT , end_CELL start_CELL if end_CELL start_CELL italic_i = italic_k , end_CELL end_ROW start_ROW start_CELL italic_E start_POSTSUBSCRIPT italic_i italic_i end_POSTSUBSCRIPT - italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT italic_i italic_k end_POSTSUBSCRIPT , end_CELL start_CELL if end_CELL start_CELL italic_i < italic_k , end_CELL end_ROW start_ROW start_CELL italic_E start_POSTSUBSCRIPT italic_i italic_i end_POSTSUBSCRIPT , end_CELL start_CELL if end_CELL start_CELL italic_i > italic_k . end_CELL end_ROW end_ARG
Proof.

By direct computation and is therefore left to the reader.∎

Proof of Theorem 1.4.

Throughout the proof, let 𝒜:=𝒜k1,k2,,krassign𝒜subscript𝒜subscript𝑘1subscript𝑘2subscript𝑘𝑟\mathcal{A}:=\mathcal{A}_{k_{1},k_{2},\dots,k_{r}}caligraphic_A := caligraphic_A start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … , italic_k start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT, r2𝑟2r\geq 2italic_r ≥ 2, be fixed.Let ϕ:𝒜Mn:italic-ϕ𝒜subscript𝑀𝑛\phi:\mathcal{A}\to M_{n}italic_ϕ : caligraphic_A → italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT be a continuous injective map which preserves commutativity and spectrum. By Lemma 4.1, we first conclude that ϕitalic-ϕ\phiitalic_ϕ also preserves the algebraic multiplicities of the eigenvalues.

For easier comprehension, the proof will now be divided into several steps.

Step 1.

There exists an invertible matrix S𝒜𝑆𝒜S\in\mathcal{A}italic_S ∈ caligraphic_A such thatϕ(D)=SDS1italic-ϕ𝐷𝑆𝐷superscript𝑆1\phi(D)=SDS^{-1}italic_ϕ ( italic_D ) = italic_S italic_D italic_S start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, for all diagonal matrices D𝒜𝐷𝒜D\in\mathcal{A}italic_D ∈ caligraphic_A.

Proof.

Since the matrix ϕ(Δ)Mnitalic-ϕΔsubscript𝑀𝑛\phi(\Delta)\in M_{n}italic_ϕ ( roman_Δ ) ∈ italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT is diagonalizable with eigenvalues 1,,n1𝑛1,\ldots,n1 , … , italic_n, there exists an SMn×𝑆superscriptsubscript𝑀𝑛S\in M_{n}^{\times}italic_S ∈ italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT such that ϕ(Δ)=SΔS1italic-ϕΔ𝑆Δsuperscript𝑆1\phi(\Delta)=S\Delta S^{-1}italic_ϕ ( roman_Δ ) = italic_S roman_Δ italic_S start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT. For any D𝒟n𝐷subscript𝒟𝑛D\in\mathcal{D}_{n}italic_D ∈ caligraphic_D start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT we have ϕ(D)ϕ(Δ)=SΔS1italic-ϕ𝐷italic-ϕΔ𝑆Δsuperscript𝑆1\phi(D)\leftrightarrow\phi(\Delta)=S\Delta S^{-1}italic_ϕ ( italic_D ) ↔ italic_ϕ ( roman_Δ ) = italic_S roman_Δ italic_S start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, since DΔ𝐷ΔD\leftrightarrow\Deltaitalic_D ↔ roman_Δ. So, ϕ(D)=SD~S1italic-ϕ𝐷𝑆~𝐷superscript𝑆1\phi(D)=S\widetilde{D}S^{-1}italic_ϕ ( italic_D ) = italic_S over~ start_ARG italic_D end_ARG italic_S start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT for some diagonal D~Mn~𝐷subscript𝑀𝑛\widetilde{D}\in M_{n}over~ start_ARG italic_D end_ARG ∈ italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT. By continuity of ϕitalic-ϕ\phiitalic_ϕ, the argument from [30, Lemma 2.1] gives that D~=D~𝐷𝐷\widetilde{D}=Dover~ start_ARG italic_D end_ARG = italic_D, which confirms the claim.∎

Without loss of generality, we can assume further that ϕitalic-ϕ\phiitalic_ϕ is the identity on all diagonal matrices.

Step 2.

ϕitalic-ϕ\phiitalic_ϕ is a hom*ogeneous map. Moreover, if A𝐴Aitalic_A and B𝐵Bitalic_B are diagonalizable matrices in 𝒜𝒜\mathcal{A}caligraphic_A, with the similarity matrix in 𝒜×superscript𝒜\mathcal{A}^{\times}caligraphic_A start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT, satisfying AB=BA=0𝐴𝐵𝐵𝐴0AB=BA=0italic_A italic_B = italic_B italic_A = 0, then ϕ(A)ϕ(B)=ϕ(B)ϕ(A)=0italic-ϕ𝐴italic-ϕ𝐵italic-ϕ𝐵italic-ϕ𝐴0\phi(A)\phi(B)=\phi(B)\phi(A)=0italic_ϕ ( italic_A ) italic_ϕ ( italic_B ) = italic_ϕ ( italic_B ) italic_ϕ ( italic_A ) = 0.

Proof.

For any S𝒜×𝑆superscript𝒜S\in\mathcal{A}^{\times}italic_S ∈ caligraphic_A start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT there exists a matrix TSMn×subscript𝑇𝑆superscriptsubscript𝑀𝑛T_{S}\in M_{n}^{\times}italic_T start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT ∈ italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT such that ϕ(SΔS1)=TSΔTS1italic-ϕ𝑆Δsuperscript𝑆1subscript𝑇𝑆Δsuperscriptsubscript𝑇𝑆1\phi(S\Delta S^{-1})=T_{S}\Delta T_{S}^{-1}italic_ϕ ( italic_S roman_Δ italic_S start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) = italic_T start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT roman_Δ italic_T start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT. Applying Step 1 for the map XTS1ϕ(SXS1)TSmaps-to𝑋superscriptsubscript𝑇𝑆1italic-ϕ𝑆𝑋superscript𝑆1subscript𝑇𝑆X\mapsto T_{S}^{-1}\phi(SXS^{-1})T_{S}italic_X ↦ italic_T start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_ϕ ( italic_S italic_X italic_S start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) italic_T start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT provides that ϕ(SDS1)=TSDTS1italic-ϕ𝑆𝐷superscript𝑆1subscript𝑇𝑆𝐷superscriptsubscript𝑇𝑆1\phi(SDS^{-1})=T_{S}DT_{S}^{-1}italic_ϕ ( italic_S italic_D italic_S start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) = italic_T start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT italic_D italic_T start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT for every diagonal matrix D𝐷Ditalic_D. Replacing D𝐷Ditalic_D by αD𝛼𝐷\alpha Ditalic_α italic_D, α𝛼\alpha\in\mathbb{C}italic_α ∈ blackboard_C gives thatϕitalic-ϕ\phiitalic_ϕ is hom*ogeneous on the set of all diagonalizable matrices in 𝒜𝒜\mathcal{A}caligraphic_A. By density of such matrices (a consequence of Lemma 2.2) we conclude that ϕitalic-ϕ\phiitalic_ϕ is a hom*ogeneous map on 𝒜𝒜\mathcal{A}caligraphic_A.

To prove the second assertion, we first show that any pair of matrices ABperpendicular-to𝐴𝐵A\perp Bitalic_A ⟂ italic_B is simultaneously diagonalizable in 𝒜𝒜\mathcal{A}caligraphic_A. Assume that A=S1D1S11𝐴subscript𝑆1subscript𝐷1superscriptsubscript𝑆11A=S_{1}D_{1}S_{1}^{-1}italic_A = italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT for some S1𝒜×subscript𝑆1superscript𝒜S_{1}\in\mathcal{A}^{\times}italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∈ caligraphic_A start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT and D1=diag(d1,d2,,dn)subscript𝐷1diagsubscript𝑑1subscript𝑑2subscript𝑑𝑛D_{1}=\operatorname{diag}(d_{1},d_{2},\dots,d_{n})italic_D start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = roman_diag ( italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_d start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … , italic_d start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ). If A=0𝐴0A=0italic_A = 0 or A𝐴Aitalic_A is invertible, we are done. So, we can assume that the index set 𝒥={j;dj0}𝒥𝑗subscript𝑑𝑗0\mathcal{J}=\{j;\ d_{j}\neq 0\}caligraphic_J = { italic_j ; italic_d start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ≠ 0 } is a nonempty proper subset of {1,2,,n}12𝑛\{1,2,\dots,n\}{ 1 , 2 , … , italic_n }. We observe that S11BS1(j𝒥Ejj)𝒜superscriptsubscript𝑆11𝐵subscript𝑆1subscript𝑗𝒥superscriptsubscript𝐸𝑗𝑗perpendicular-to𝒜S_{1}^{-1}BS_{1}\in\left(\cap_{j\in\mathcal{J}}E_{jj}^{\perp}\right)\cap%\mathcal{A}italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_B italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∈ ( ∩ start_POSTSUBSCRIPT italic_j ∈ caligraphic_J end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT italic_j italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT ) ∩ caligraphic_A and, since it is diagonalizable, there exists a S2𝒜×subscript𝑆2superscript𝒜S_{2}\in\mathcal{A}^{\times}italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∈ caligraphic_A start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT commuting with all Ejjsubscript𝐸𝑗𝑗E_{jj}italic_E start_POSTSUBSCRIPT italic_j italic_j end_POSTSUBSCRIPT, j𝒥𝑗𝒥j\in\mathcal{J}italic_j ∈ caligraphic_J, such that S21S11BS1S2=:D2S_{2}^{-1}S_{1}^{-1}BS_{1}S_{2}=:D_{2}italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_B italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = : italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT is diagonal and S21S11AS1S2=D1superscriptsubscript𝑆21superscriptsubscript𝑆11𝐴subscript𝑆1subscript𝑆2subscript𝐷1S_{2}^{-1}S_{1}^{-1}AS_{1}S_{2}=D_{1}italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_A italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_D start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT. Now, for S:=S1S2𝒜×assign𝑆subscript𝑆1subscript𝑆2superscript𝒜S:=S_{1}S_{2}\in\mathcal{A}^{\times}italic_S := italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∈ caligraphic_A start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT we have A=SD1S1𝐴𝑆subscript𝐷1superscript𝑆1A=SD_{1}S^{-1}italic_A = italic_S italic_D start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_S start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT and B=SD2S1𝐵𝑆subscript𝐷2superscript𝑆1B=SD_{2}S^{-1}italic_B = italic_S italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_S start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT.

To close the proof of this step, there exists an invertible matrix T𝑇Titalic_T such that ϕ(SΔS1)=TΔT1italic-ϕ𝑆Δsuperscript𝑆1𝑇Δsuperscript𝑇1\phi(S\Delta S^{-1})=T\Delta T^{-1}italic_ϕ ( italic_S roman_Δ italic_S start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) = italic_T roman_Δ italic_T start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT. It follows that ϕ(SDjS1)=TDjT1italic-ϕ𝑆subscript𝐷𝑗superscript𝑆1𝑇subscript𝐷𝑗superscript𝑇1\phi(SD_{j}S^{-1})=TD_{j}T^{-1}italic_ϕ ( italic_S italic_D start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_S start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) = italic_T italic_D start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_T start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, j=1,2𝑗12j=1,2italic_j = 1 , 2. Hence ϕ(A)ϕ(B)=ϕ(B)ϕ(A)=0italic-ϕ𝐴italic-ϕ𝐵italic-ϕ𝐵italic-ϕ𝐴0\phi(A)\phi(B)=\phi(B)\phi(A)=0italic_ϕ ( italic_A ) italic_ϕ ( italic_B ) = italic_ϕ ( italic_B ) italic_ϕ ( italic_A ) = 0.∎

Step 3.

Fix a k{1,2,,n}𝑘12𝑛k\in\{1,2,\dots,n\}italic_k ∈ { 1 , 2 , … , italic_n }. Let S𝒜𝑆𝒜S\in\mathcal{A}italic_S ∈ caligraphic_A and TMn𝑇subscript𝑀𝑛T\in M_{n}italic_T ∈ italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT be invertible matrices such that ϕ(SEiiS1)=TEiiT1italic-ϕ𝑆subscript𝐸𝑖𝑖superscript𝑆1𝑇subscript𝐸𝑖𝑖superscript𝑇1\phi(SE_{ii}S^{-1})=TE_{ii}T^{-1}italic_ϕ ( italic_S italic_E start_POSTSUBSCRIPT italic_i italic_i end_POSTSUBSCRIPT italic_S start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) = italic_T italic_E start_POSTSUBSCRIPT italic_i italic_i end_POSTSUBSCRIPT italic_T start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT for all ik𝑖𝑘i\neq kitalic_i ≠ italic_k. Then ϕ(SEkkS1)=TEkkT1italic-ϕ𝑆subscript𝐸𝑘𝑘superscript𝑆1𝑇subscript𝐸𝑘𝑘superscript𝑇1\phi(SE_{kk}S^{-1})=TE_{kk}T^{-1}italic_ϕ ( italic_S italic_E start_POSTSUBSCRIPT italic_k italic_k end_POSTSUBSCRIPT italic_S start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) = italic_T italic_E start_POSTSUBSCRIPT italic_k italic_k end_POSTSUBSCRIPT italic_T start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT.

Proof.

We know that ϕ(SΔS1)=PΔP1italic-ϕ𝑆Δsuperscript𝑆1𝑃Δsuperscript𝑃1\phi(S\Delta S^{-1})=P\Delta P^{-1}italic_ϕ ( italic_S roman_Δ italic_S start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) = italic_P roman_Δ italic_P start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT for some invertible PMn𝑃subscript𝑀𝑛P\in M_{n}italic_P ∈ italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT which implies that ϕ(SDS1)=PDP1italic-ϕ𝑆𝐷superscript𝑆1𝑃𝐷superscript𝑃1\phi(SDS^{-1})=PDP^{-1}italic_ϕ ( italic_S italic_D italic_S start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) = italic_P italic_D italic_P start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT for every diagonal matrix D𝐷Ditalic_D. It follows that TEiiT1=PEiiP1𝑇subscript𝐸𝑖𝑖superscript𝑇1𝑃subscript𝐸𝑖𝑖superscript𝑃1TE_{ii}T^{-1}=PE_{ii}P^{-1}italic_T italic_E start_POSTSUBSCRIPT italic_i italic_i end_POSTSUBSCRIPT italic_T start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = italic_P italic_E start_POSTSUBSCRIPT italic_i italic_i end_POSTSUBSCRIPT italic_P start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, ik𝑖𝑘i\neq kitalic_i ≠ italic_k and so,

ϕ(SEkkS1)=PEkkP1=IikPEiiP1=IikTEiiT1=TEkkT1.italic-ϕ𝑆subscript𝐸𝑘𝑘superscript𝑆1𝑃subscript𝐸𝑘𝑘superscript𝑃1𝐼subscript𝑖𝑘𝑃subscript𝐸𝑖𝑖superscript𝑃1𝐼subscript𝑖𝑘𝑇subscript𝐸𝑖𝑖superscript𝑇1𝑇subscript𝐸𝑘𝑘superscript𝑇1\phi(SE_{kk}S^{-1})=PE_{kk}P^{-1}=I-\sum_{i\neq k}PE_{ii}P^{-1}=I-\sum_{i\neq k%}TE_{ii}T^{-1}=TE_{kk}T^{-1}.italic_ϕ ( italic_S italic_E start_POSTSUBSCRIPT italic_k italic_k end_POSTSUBSCRIPT italic_S start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) = italic_P italic_E start_POSTSUBSCRIPT italic_k italic_k end_POSTSUBSCRIPT italic_P start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = italic_I - ∑ start_POSTSUBSCRIPT italic_i ≠ italic_k end_POSTSUBSCRIPT italic_P italic_E start_POSTSUBSCRIPT italic_i italic_i end_POSTSUBSCRIPT italic_P start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = italic_I - ∑ start_POSTSUBSCRIPT italic_i ≠ italic_k end_POSTSUBSCRIPT italic_T italic_E start_POSTSUBSCRIPT italic_i italic_i end_POSTSUBSCRIPT italic_T start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = italic_T italic_E start_POSTSUBSCRIPT italic_k italic_k end_POSTSUBSCRIPT italic_T start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT .

Step 4 (Base of induction, n=3𝑛3n=3italic_n = 3).

Now we prove Theorem 1.4 completely for n=3𝑛3n=3italic_n = 3.

It suffices to prove the theorem for 𝒜=𝒜1,1,1𝒜subscript𝒜111\mathcal{A}=\mathcal{A}_{1,1,1}caligraphic_A = caligraphic_A start_POSTSUBSCRIPT 1 , 1 , 1 end_POSTSUBSCRIPT or 𝒜=𝒜1,2𝒜subscript𝒜12\mathcal{A}=\mathcal{A}_{1,2}caligraphic_A = caligraphic_A start_POSTSUBSCRIPT 1 , 2 end_POSTSUBSCRIPT. Indeed, the M3subscript𝑀3M_{3}italic_M start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT case is covered by Theorem 1.1, while if ϕ:𝒜2,1M3:italic-ϕsubscript𝒜21subscript𝑀3\phi:\mathcal{A}_{2,1}\to M_{3}italic_ϕ : caligraphic_A start_POSTSUBSCRIPT 2 , 1 end_POSTSUBSCRIPT → italic_M start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT is a continuous injective commutativity and spectrum preserving map, then

Xϕ(X):𝒜1,2M3:maps-to𝑋italic-ϕsuperscript𝑋direct-productsubscript𝒜12subscript𝑀3X\mapsto\phi(X^{\odot}):\mathcal{A}_{1,2}\to M_{3}italic_X ↦ italic_ϕ ( italic_X start_POSTSUPERSCRIPT ⊙ end_POSTSUPERSCRIPT ) : caligraphic_A start_POSTSUBSCRIPT 1 , 2 end_POSTSUBSCRIPT → italic_M start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT

is also such a map and thus the theorem follows from the 𝒜1,2subscript𝒜12\mathcal{A}_{1,2}caligraphic_A start_POSTSUBSCRIPT 1 , 2 end_POSTSUBSCRIPT case.

Step 4.1 (Matrix units).

We show that we can, without loss of generality, assume that there exist constants cij×subscript𝑐𝑖𝑗superscriptc_{ij}\in{\mathbb{C}}^{\times}italic_c start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ∈ blackboard_C start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT such that

ϕ(Eij)=cijEij,for all matrix unitsEij𝒜.formulae-sequenceitalic-ϕsubscript𝐸𝑖𝑗subscript𝑐𝑖𝑗subscript𝐸𝑖𝑗for all matrix unitssubscript𝐸𝑖𝑗𝒜\phi(E_{ij})=c_{ij}E_{ij},\qquad\text{ for all matrix units }E_{ij}\in\mathcal%{A}.italic_ϕ ( italic_E start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ) = italic_c start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT , for all matrix units italic_E start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ∈ caligraphic_A .

We have E12E33subscript𝐸12subscript𝐸33E_{12}\leftrightarrow E_{33}italic_E start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ↔ italic_E start_POSTSUBSCRIPT 33 end_POSTSUBSCRIPT so by our assumption that ϕitalic-ϕ\phiitalic_ϕ fixes all diagonal matrices, we have ϕ(E12)ϕ(E33)=E33italic-ϕsubscript𝐸12italic-ϕsubscript𝐸33subscript𝐸33\phi(E_{12})\leftrightarrow\phi(E_{33})=E_{33}italic_ϕ ( italic_E start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ) ↔ italic_ϕ ( italic_E start_POSTSUBSCRIPT 33 end_POSTSUBSCRIPT ) = italic_E start_POSTSUBSCRIPT 33 end_POSTSUBSCRIPT. By the fact that ϕitalic-ϕ\phiitalic_ϕ is injective and preserves spectrum, the matrix ϕ(E12)italic-ϕsubscript𝐸12\phi(E_{12})italic_ϕ ( italic_E start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ) is a nonzero nilpotent so we conclude

ϕ(E12)=[aca20c2ac0000]italic-ϕsubscript𝐸12matrix𝑎𝑐superscript𝑎20superscript𝑐2𝑎𝑐0000\phi(E_{12})=\begin{bmatrix}ac&a^{2}&0\\-c^{2}&-ac&0\\0&0&0\end{bmatrix}italic_ϕ ( italic_E start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ) = [ start_ARG start_ROW start_CELL italic_a italic_c end_CELL start_CELL italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL - italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL start_CELL - italic_a italic_c end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW end_ARG ]

for some a,c𝑎𝑐a,c\in{\mathbb{C}}italic_a , italic_c ∈ blackboard_C not both equal to 00. Analogously we get

ϕ(E13)=[bd0b2000d20bd]italic-ϕsubscript𝐸13matrix𝑏𝑑0superscript𝑏2000superscript𝑑20𝑏𝑑\phi(E_{13})=\begin{bmatrix}bd&0&b^{2}\\0&0&0\\-d^{2}&0&-bd\end{bmatrix}italic_ϕ ( italic_E start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT ) = [ start_ARG start_ROW start_CELL italic_b italic_d end_CELL start_CELL 0 end_CELL start_CELL italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL - italic_d start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL start_CELL 0 end_CELL start_CELL - italic_b italic_d end_CELL end_ROW end_ARG ]

for some b,d𝑏𝑑b,d\in{\mathbb{C}}italic_b , italic_d ∈ blackboard_C not both equal to 00. Since E12E13subscript𝐸12subscript𝐸13E_{12}\leftrightarrow E_{13}italic_E start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ↔ italic_E start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT we have

[abcd0ab2cbc2d0b2c2000]=ϕ(E12)ϕ(E13)=ϕ(E13)ϕ(E12)=[abcda2bd0000acd2a2d20].matrix𝑎𝑏𝑐𝑑0𝑎superscript𝑏2𝑐𝑏superscript𝑐2𝑑0superscript𝑏2superscript𝑐2000italic-ϕsubscript𝐸12italic-ϕsubscript𝐸13italic-ϕsubscript𝐸13italic-ϕsubscript𝐸12matrix𝑎𝑏𝑐𝑑superscript𝑎2𝑏𝑑0000𝑎𝑐superscript𝑑2superscript𝑎2superscript𝑑20\begin{bmatrix}abcd&0&ab^{2}c\\-bc^{2}d&0&-b^{2}c^{2}\\0&0&0\\\end{bmatrix}=\phi(E_{12})\phi(E_{13})=\phi(E_{13})\phi(E_{12})=\begin{bmatrix%}abcd&a^{2}bd&0\\0&0&0\\-acd^{2}&-a^{2}d^{2}&0\\\end{bmatrix}.[ start_ARG start_ROW start_CELL italic_a italic_b italic_c italic_d end_CELL start_CELL 0 end_CELL start_CELL italic_a italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_c end_CELL end_ROW start_ROW start_CELL - italic_b italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d end_CELL start_CELL 0 end_CELL start_CELL - italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW end_ARG ] = italic_ϕ ( italic_E start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ) italic_ϕ ( italic_E start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT ) = italic_ϕ ( italic_E start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT ) italic_ϕ ( italic_E start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ) = [ start_ARG start_ROW start_CELL italic_a italic_b italic_c italic_d end_CELL start_CELL italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_b italic_d end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL - italic_a italic_c italic_d start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL start_CELL - italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL start_CELL 0 end_CELL end_ROW end_ARG ] .

If a0𝑎0a\neq 0italic_a ≠ 0, then a2d2=0superscript𝑎2superscript𝑑20-a^{2}d^{2}=0- italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 0 implies d=0𝑑0d=0italic_d = 0 so b0𝑏0b\neq 0italic_b ≠ 0. Now ab2c=0𝑎superscript𝑏2𝑐0ab^{2}c=0italic_a italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_c = 0 implies c=0𝑐0c=0italic_c = 0 and therefore

ϕ(E12)=a2E12,ϕ(E13)=b2E13.formulae-sequenceitalic-ϕsubscript𝐸12superscript𝑎2subscript𝐸12italic-ϕsubscript𝐸13superscript𝑏2subscript𝐸13\phi(E_{12})=a^{2}E_{12},\quad\phi(E_{13})=b^{2}E_{13}.italic_ϕ ( italic_E start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ) = italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_E start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT , italic_ϕ ( italic_E start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT ) = italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_E start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT .

If however c0𝑐0c\neq 0italic_c ≠ 0, then b2c2=0superscript𝑏2superscript𝑐20-b^{2}c^{2}=0- italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 0 implies b=0𝑏0b=0italic_b = 0 so d0𝑑0d\neq 0italic_d ≠ 0. Now a2bd=0superscript𝑎2𝑏𝑑0a^{2}bd=0italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_b italic_d = 0 implies a=0𝑎0a=0italic_a = 0 and therefore

ϕ(E12)=c2E21,ϕ(E13)=d2E31.formulae-sequenceitalic-ϕsubscript𝐸12superscript𝑐2subscript𝐸21italic-ϕsubscript𝐸13superscript𝑑2subscript𝐸31\phi(E_{12})=-c^{2}E_{21},\quad\phi(E_{13})=-d^{2}E_{31}.italic_ϕ ( italic_E start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ) = - italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_E start_POSTSUBSCRIPT 21 end_POSTSUBSCRIPT , italic_ϕ ( italic_E start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT ) = - italic_d start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_E start_POSTSUBSCRIPT 31 end_POSTSUBSCRIPT .

Without loss of generality, we can suppose that we are in the first case, as otherwise we can pass to the map ϕ()titalic-ϕsuperscript𝑡\phi(\cdot)^{t}italic_ϕ ( ⋅ ) start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT.

As above, we obtain

ϕ(E23)=[0000efe20f2ef]italic-ϕsubscript𝐸23matrix0000𝑒𝑓superscript𝑒20superscript𝑓2𝑒𝑓\phi(E_{23})=\begin{bmatrix}0&0&0\\0&ef&e^{2}\\0&-f^{2}&-ef\end{bmatrix}italic_ϕ ( italic_E start_POSTSUBSCRIPT 23 end_POSTSUBSCRIPT ) = [ start_ARG start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL italic_e italic_f end_CELL start_CELL italic_e start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL - italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL start_CELL - italic_e italic_f end_CELL end_ROW end_ARG ]

for some e,f𝑒𝑓e,f\in{\mathbb{C}}italic_e , italic_f ∈ blackboard_C not both equal to 00.By using E23E13subscript𝐸23subscript𝐸13E_{23}\leftrightarrow E_{13}italic_E start_POSTSUBSCRIPT 23 end_POSTSUBSCRIPT ↔ italic_E start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT it follows that f=0𝑓0f=0italic_f = 0 and therefore ϕ(E23)=e2E23italic-ϕsubscript𝐸23superscript𝑒2subscript𝐸23\phi(E_{23})=e^{2}E_{23}italic_ϕ ( italic_E start_POSTSUBSCRIPT 23 end_POSTSUBSCRIPT ) = italic_e start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_E start_POSTSUBSCRIPT 23 end_POSTSUBSCRIPT.

This settles the matter for 𝒜=𝒯3𝒜subscript𝒯3\mathcal{A}=\mathcal{T}_{3}caligraphic_A = caligraphic_T start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT. In the case of 𝒜=𝒜1,2𝒜subscript𝒜12\mathcal{A}=\mathcal{A}_{1,2}caligraphic_A = caligraphic_A start_POSTSUBSCRIPT 1 , 2 end_POSTSUBSCRIPT, similarly as above using E32E11,E12subscript𝐸32subscript𝐸11subscript𝐸12E_{32}\leftrightarrow E_{11},E_{12}italic_E start_POSTSUBSCRIPT 32 end_POSTSUBSCRIPT ↔ italic_E start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT , italic_E start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT we obtain ϕ(E32)=c32E32italic-ϕsubscript𝐸32subscript𝑐32subscript𝐸32\phi(E_{32})=c_{32}E_{32}italic_ϕ ( italic_E start_POSTSUBSCRIPT 32 end_POSTSUBSCRIPT ) = italic_c start_POSTSUBSCRIPT 32 end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT 32 end_POSTSUBSCRIPT for some c32×subscript𝑐32superscriptc_{32}\in{\mathbb{C}}^{\times}italic_c start_POSTSUBSCRIPT 32 end_POSTSUBSCRIPT ∈ blackboard_C start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT.

Notice that

diag(1,c12,c13)ϕ(E1j)diag(1,c12,c13)1=E1j,2j3.\operatorname{diag}(1,c_{12},c_{13})\phi(E_{1j})\operatorname{diag}(1,c_{12},c%_{13})^{-1}=E_{1j},\quad 2\leq j\leq 3.roman_diag ( 1 , italic_c start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT , italic_c start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT ) italic_ϕ ( italic_E start_POSTSUBSCRIPT 1 italic_j end_POSTSUBSCRIPT ) roman_diag ( 1 , italic_c start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT , italic_c start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = italic_E start_POSTSUBSCRIPT 1 italic_j end_POSTSUBSCRIPT , 2 ≤ italic_j ≤ 3 .

Therefore, by passing to the map

diag(1,c12,c13)ϕ()diag(1,c12,c13)1\operatorname{diag}(1,c_{12},c_{13})\phi(\cdot)\operatorname{diag}(1,c_{12},c_%{13})^{-1}roman_diag ( 1 , italic_c start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT , italic_c start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT ) italic_ϕ ( ⋅ ) roman_diag ( 1 , italic_c start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT , italic_c start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT

without loss of generality we can further assume that c12=c13=1subscript𝑐12subscript𝑐131c_{12}=c_{13}=1italic_c start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT = italic_c start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT = 1.

Step 4.2 (Rank-one matrices).

We show that ϕ(A)=Aitalic-ϕ𝐴𝐴\phi(A)=Aitalic_ϕ ( italic_A ) = italic_A for all non-nilpotent rank-one matrices A𝒜M3𝐴𝒜subscript𝑀3A\in\mathcal{A}\subset M_{3}italic_A ∈ caligraphic_A ⊂ italic_M start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT.

When we refer to orthogonality in 3superscript3\mathbb{C}^{3}blackboard_C start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT we mean orthogonality with respect to the standard inner product, i.e.xyperpendicular-to𝑥𝑦x\perp yitalic_x ⟂ italic_y if and only if yx=0(=xy)superscript𝑦𝑥annotated0absentsuperscript𝑥𝑦y^{\ast}x=0\ (=x^{\ast}y)italic_y start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_x = 0 ( = italic_x start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_y ).

Every rank-one matrix in 𝒜𝒜\mathcal{A}caligraphic_A is either of the form

(a)[000000]or(b)[000].𝑎matrix000000or𝑏matrix000(a)\,\begin{bmatrix}\ast&\ast&\ast\\0&0&0\\0&0&0\end{bmatrix}\qquad\text{or}\qquad(b)\,\begin{bmatrix}0&\ast&\ast\\0&\ast&\ast\\0&\ast&\ast\end{bmatrix}.( italic_a ) [ start_ARG start_ROW start_CELL ∗ end_CELL start_CELL ∗ end_CELL start_CELL ∗ end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW end_ARG ] or ( italic_b ) [ start_ARG start_ROW start_CELL 0 end_CELL start_CELL ∗ end_CELL start_CELL ∗ end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL ∗ end_CELL start_CELL ∗ end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL ∗ end_CELL start_CELL ∗ end_CELL end_ROW end_ARG ] .

We start with case (a) and introduce

R(α,x,y):=[αxy000000].assign𝑅𝛼𝑥𝑦matrix𝛼𝑥𝑦000000R(\alpha,x,y):=\begin{bmatrix}\alpha&x&y\\0&0&0\\0&0&0\end{bmatrix}.italic_R ( italic_α , italic_x , italic_y ) := [ start_ARG start_ROW start_CELL italic_α end_CELL start_CELL italic_x end_CELL start_CELL italic_y end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW end_ARG ] .

After careful consideration of [29, Lemma 5], we note that the same arguments can be conducted entirely within the algebra 𝒜𝒜\mathcal{A}caligraphic_A in order to obtain continuous functions a12,a13:2:subscript𝑎12subscript𝑎13superscript2a_{12},a_{13}:{\mathbb{C}}^{2}\to{\mathbb{C}}italic_a start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT , italic_a start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT : blackboard_C start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT → blackboard_C such that

ϕ(R(α,x,y))=[αa12(α,x)a13(α,y)000000],for allα,x,y,italic-ϕ𝑅𝛼𝑥𝑦matrix𝛼subscript𝑎12𝛼𝑥subscript𝑎13𝛼𝑦000000for allα,x,y\phi(R(\alpha,x,y))=\begin{bmatrix}\alpha&a_{12}(\alpha,x)&a_{13}(\alpha,y)\\0&0&0\\0&0&0\end{bmatrix},\qquad\text{ for all $\alpha,x,y\in{\mathbb{C}}$},italic_ϕ ( italic_R ( italic_α , italic_x , italic_y ) ) = [ start_ARG start_ROW start_CELL italic_α end_CELL start_CELL italic_a start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ( italic_α , italic_x ) end_CELL start_CELL italic_a start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT ( italic_α , italic_y ) end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW end_ARG ] , for all italic_α , italic_x , italic_y ∈ blackboard_C ,

with the property a12(0,x)=xsubscript𝑎120𝑥𝑥a_{12}(0,x)=xitalic_a start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ( 0 , italic_x ) = italic_x and a13(0,y)=ysubscript𝑎130𝑦𝑦a_{13}(0,y)=yitalic_a start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT ( 0 , italic_y ) = italic_y for all x,y𝑥𝑦x,y\in{\mathbb{C}}italic_x , italic_y ∈ blackboard_C. In particular, for all x,y𝑥𝑦x,y\in{\mathbb{C}}italic_x , italic_y ∈ blackboard_C holds

ϕ(R(0,x,y))italic-ϕ𝑅0𝑥𝑦\displaystyle\phi(R(0,x,y))italic_ϕ ( italic_R ( 0 , italic_x , italic_y ) )=limα0ϕ(R(α,x,y))=limα0R(α,a12(α,x),a13(α,y))absentsubscript𝛼0italic-ϕ𝑅𝛼𝑥𝑦subscript𝛼0𝑅𝛼subscript𝑎12𝛼𝑥subscript𝑎13𝛼𝑦\displaystyle=\lim_{\alpha\to 0}\phi(R(\alpha,x,y))=\lim_{\alpha\to 0}R(\alpha%,a_{12}(\alpha,x),a_{13}(\alpha,y))= roman_lim start_POSTSUBSCRIPT italic_α → 0 end_POSTSUBSCRIPT italic_ϕ ( italic_R ( italic_α , italic_x , italic_y ) ) = roman_lim start_POSTSUBSCRIPT italic_α → 0 end_POSTSUBSCRIPT italic_R ( italic_α , italic_a start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ( italic_α , italic_x ) , italic_a start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT ( italic_α , italic_y ) )
=R(0,a12(0,x),a13(0,y))=R(0,x,y).absent𝑅0subscript𝑎120𝑥subscript𝑎130𝑦𝑅0𝑥𝑦\displaystyle=R(0,a_{12}(0,x),a_{13}(0,y))=R(0,x,y).= italic_R ( 0 , italic_a start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ( 0 , italic_x ) , italic_a start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT ( 0 , italic_y ) ) = italic_R ( 0 , italic_x , italic_y ) .

However, the rest of the argument from [29, Lemma 5] is not applicable as it leaves the algebra 𝒜𝒜\mathcal{A}caligraphic_A. Denote R=R(1,x,y)𝑅𝑅1𝑥𝑦R=R(1,x,y)italic_R = italic_R ( 1 , italic_x , italic_y ). From Lemma 4.2 we can writeR=S(x,y)1E11S(x,y)𝑅𝑆superscript𝑥𝑦1subscript𝐸11𝑆𝑥𝑦R=S(x,y)^{-1}E_{11}S(x,y)italic_R = italic_S ( italic_x , italic_y ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_E start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT italic_S ( italic_x , italic_y ) for S(x,y)=I+e1[0xy]𝑆𝑥𝑦𝐼subscript𝑒1delimited-[]0𝑥𝑦S(x,y)=I+e_{1}\left[0\ x\ y\right]italic_S ( italic_x , italic_y ) = italic_I + italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT [ 0 italic_x italic_y ]. Then

S(x,y)1E22S(x,y)=E22xE12andS(x,y)1E33S(x,y)=E33yE13.𝑆superscript𝑥𝑦1subscript𝐸22𝑆𝑥𝑦subscript𝐸22𝑥subscript𝐸12and𝑆superscript𝑥𝑦1subscript𝐸33𝑆𝑥𝑦subscript𝐸33𝑦subscript𝐸13S(x,y)^{-1}E_{22}S(x,y)=E_{22}-xE_{12}\ \text{ and }\ S(x,y)^{-1}E_{33}S(x,y)=%E_{33}-yE_{13}.italic_S ( italic_x , italic_y ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_E start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT italic_S ( italic_x , italic_y ) = italic_E start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT - italic_x italic_E start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT and italic_S ( italic_x , italic_y ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_E start_POSTSUBSCRIPT 33 end_POSTSUBSCRIPT italic_S ( italic_x , italic_y ) = italic_E start_POSTSUBSCRIPT 33 end_POSTSUBSCRIPT - italic_y italic_E start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT .

We see that E22xE12E33perpendicular-tosubscript𝐸22𝑥subscript𝐸12subscript𝐸33E_{22}-xE_{12}\perp E_{33}italic_E start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT - italic_x italic_E start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ⟂ italic_E start_POSTSUBSCRIPT 33 end_POSTSUBSCRIPT and it commutes with E13subscript𝐸13E_{13}italic_E start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT. Applying also the spectrum preserving property, we get thatϕ(E22xE12)=E22f12(x)E12italic-ϕsubscript𝐸22𝑥subscript𝐸12subscript𝐸22subscript𝑓12𝑥subscript𝐸12\phi(E_{22}-xE_{12})=E_{22}-f_{12}(x)E_{12}italic_ϕ ( italic_E start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT - italic_x italic_E start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ) = italic_E start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT - italic_f start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ( italic_x ) italic_E start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT for some complex-valued continuous function f12:×:subscript𝑓12superscriptf_{12}:{\mathbb{C}}^{\times}\to{\mathbb{C}}italic_f start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT : blackboard_C start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT → blackboard_C. Similarly, by applying orthogonality with E22subscript𝐸22E_{22}italic_E start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT and commuting with E12subscript𝐸12E_{12}italic_E start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT one gets that ϕ(E33yE13)=E33f13(x)E13italic-ϕsubscript𝐸33𝑦subscript𝐸13subscript𝐸33subscript𝑓13𝑥subscript𝐸13\phi(E_{33}-yE_{13})=E_{33}-f_{13}(x)E_{13}italic_ϕ ( italic_E start_POSTSUBSCRIPT 33 end_POSTSUBSCRIPT - italic_y italic_E start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT ) = italic_E start_POSTSUBSCRIPT 33 end_POSTSUBSCRIPT - italic_f start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT ( italic_x ) italic_E start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT for some continuous function f13subscript𝑓13f_{13}italic_f start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT. Then we have

ϕ(E22xE12)=S(f12(x),f13(y))1E22S(f12(x),f13(y))italic-ϕsubscript𝐸22𝑥subscript𝐸12𝑆superscriptsubscript𝑓12𝑥subscript𝑓13𝑦1subscript𝐸22𝑆subscript𝑓12𝑥subscript𝑓13𝑦\phi(E_{22}-xE_{12})=S(f_{12}(x),f_{13}(y))^{-1}E_{22}S(f_{12}(x),f_{13}(y))italic_ϕ ( italic_E start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT - italic_x italic_E start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ) = italic_S ( italic_f start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ( italic_x ) , italic_f start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT ( italic_y ) ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_E start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT italic_S ( italic_f start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ( italic_x ) , italic_f start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT ( italic_y ) )

and

ϕ(E33yE13)=S(f12(x),f13(y))1E33S(f12(x),f13(y)).italic-ϕsubscript𝐸33𝑦subscript𝐸13𝑆superscriptsubscript𝑓12𝑥subscript𝑓13𝑦1subscript𝐸33𝑆subscript𝑓12𝑥subscript𝑓13𝑦\phi(E_{33}-yE_{13})=S(f_{12}(x),f_{13}(y))^{-1}E_{33}S(f_{12}(x),f_{13}(y)).italic_ϕ ( italic_E start_POSTSUBSCRIPT 33 end_POSTSUBSCRIPT - italic_y italic_E start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT ) = italic_S ( italic_f start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ( italic_x ) , italic_f start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT ( italic_y ) ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_E start_POSTSUBSCRIPT 33 end_POSTSUBSCRIPT italic_S ( italic_f start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ( italic_x ) , italic_f start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT ( italic_y ) ) .

By Step 3 we get that

ϕ(R)=S(f12(x),f13(y))1E11S(f12(x),f13(y))=R(1,f12(x),f13(y)).italic-ϕ𝑅𝑆superscriptsubscript𝑓12𝑥subscript𝑓13𝑦1subscript𝐸11𝑆subscript𝑓12𝑥subscript𝑓13𝑦𝑅1subscript𝑓12𝑥subscript𝑓13𝑦\phi(R)=S(f_{12}(x),f_{13}(y))^{-1}E_{11}S(f_{12}(x),f_{13}(y))=R(1,f_{12}(x),%f_{13}(y)).italic_ϕ ( italic_R ) = italic_S ( italic_f start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ( italic_x ) , italic_f start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT ( italic_y ) ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_E start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT italic_S ( italic_f start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ( italic_x ) , italic_f start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT ( italic_y ) ) = italic_R ( 1 , italic_f start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ( italic_x ) , italic_f start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT ( italic_y ) ) .

Let us next consider the matrix E33zE23subscript𝐸33𝑧subscript𝐸23E_{33}-zE_{23}italic_E start_POSTSUBSCRIPT 33 end_POSTSUBSCRIPT - italic_z italic_E start_POSTSUBSCRIPT 23 end_POSTSUBSCRIPT, being orthogonal to E11subscript𝐸11E_{11}italic_E start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT and commuting with E12+zE13=ϕ(E12+zE13)subscript𝐸12𝑧subscript𝐸13italic-ϕsubscript𝐸12𝑧subscript𝐸13E_{12}+zE_{13}=\phi(E_{12}+zE_{13})italic_E start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT + italic_z italic_E start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT = italic_ϕ ( italic_E start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT + italic_z italic_E start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT ). The matrix E33zE23subscript𝐸33𝑧subscript𝐸23E_{33}-zE_{23}italic_E start_POSTSUBSCRIPT 33 end_POSTSUBSCRIPT - italic_z italic_E start_POSTSUBSCRIPT 23 end_POSTSUBSCRIPT commutes with E21subscript𝐸21E_{21}italic_E start_POSTSUBSCRIPT 21 end_POSTSUBSCRIPT which is not applicable. However, it commutes with E12+zE13subscript𝐸12𝑧subscript𝐸13E_{12}+zE_{13}italic_E start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT + italic_z italic_E start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT. So, there exist functions p(z)𝑝𝑧p(z)italic_p ( italic_z ) and q(z)𝑞𝑧q(z)italic_q ( italic_z ), not both equal to zero at any non-zero z𝑧zitalic_z, such that

ϕ(E33zE23)=[0000p(z)zq(z)z0p(z)q(z)].italic-ϕsubscript𝐸33𝑧subscript𝐸23matrix0000𝑝𝑧𝑧𝑞𝑧𝑧0𝑝𝑧𝑞𝑧\phi(E_{33}-zE_{23})=\begin{bmatrix}0&0&0\\0&-p(z)z&-q(z)z\\0&p(z)&q(z)\end{bmatrix}.italic_ϕ ( italic_E start_POSTSUBSCRIPT 33 end_POSTSUBSCRIPT - italic_z italic_E start_POSTSUBSCRIPT 23 end_POSTSUBSCRIPT ) = [ start_ARG start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL - italic_p ( italic_z ) italic_z end_CELL start_CELL - italic_q ( italic_z ) italic_z end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL italic_p ( italic_z ) end_CELL start_CELL italic_q ( italic_z ) end_CELL end_ROW end_ARG ] .

We use this observation with the relationR(1,x,y)E33y/xE23perpendicular-to𝑅1𝑥𝑦subscript𝐸33𝑦𝑥subscript𝐸23R(1,x,y)\perp E_{33}-y/xE_{23}italic_R ( 1 , italic_x , italic_y ) ⟂ italic_E start_POSTSUBSCRIPT 33 end_POSTSUBSCRIPT - italic_y / italic_x italic_E start_POSTSUBSCRIPT 23 end_POSTSUBSCRIPT and thus obtain that [1f12(x)f13(y)][0y/x 1]t=0delimited-[]1subscript𝑓12𝑥subscript𝑓13𝑦superscriptdelimited-[]0𝑦𝑥1𝑡0\left[1\ f_{12}(x)\ f_{13}(y)\right]\left[0\ -y/x\ 1\right]^{t}=0[ 1 italic_f start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ( italic_x ) italic_f start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT ( italic_y ) ] [ 0 - italic_y / italic_x 1 ] start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT = 0 giving f12(x)/x=f13(y)/y=csubscript𝑓12𝑥𝑥subscript𝑓13𝑦𝑦𝑐f_{12}(x)/x=f_{13}(y)/y=citalic_f start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ( italic_x ) / italic_x = italic_f start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT ( italic_y ) / italic_y = italic_c for some nonzero constant c𝑐citalic_c. By continuity and hom*ogeneity of ϕitalic-ϕ\phiitalic_ϕ we have

c12E12=ϕ(E12)=limε0ϕ(εE11+E12)=limε0εϕ(R(1,1/ε,0))=limε0R(ε,c,0)=cE12.subscript𝑐12subscript𝐸12italic-ϕsubscript𝐸12subscript𝜀0italic-ϕ𝜀subscript𝐸11subscript𝐸12subscript𝜀0𝜀italic-ϕ𝑅11𝜀0subscript𝜀0𝑅𝜀𝑐0𝑐subscript𝐸12c_{12}E_{12}=\phi(E_{12})=\lim_{\varepsilon\to 0}\phi(\varepsilon E_{11}+E_{12%})=\lim_{\varepsilon\to 0}\varepsilon\phi(R(1,1/\varepsilon,0))=\lim_{%\varepsilon\to 0}R(\varepsilon,c,0)=cE_{12}.italic_c start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT = italic_ϕ ( italic_E start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ) = roman_lim start_POSTSUBSCRIPT italic_ε → 0 end_POSTSUBSCRIPT italic_ϕ ( italic_ε italic_E start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT + italic_E start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ) = roman_lim start_POSTSUBSCRIPT italic_ε → 0 end_POSTSUBSCRIPT italic_ε italic_ϕ ( italic_R ( 1 , 1 / italic_ε , 0 ) ) = roman_lim start_POSTSUBSCRIPT italic_ε → 0 end_POSTSUBSCRIPT italic_R ( italic_ε , italic_c , 0 ) = italic_c italic_E start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT .

By our reduction above c12=c13=1subscript𝑐12subscript𝑐131c_{12}=c_{13}=1italic_c start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT = italic_c start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT = 1 and hence c=1𝑐1c=1italic_c = 1 which proves the case (a).

Let us proceed with the case (b). We can write any such rank-one (possibly nilpotent) matrix as ab𝑎superscript𝑏ab^{\ast}italic_a italic_b start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT where a𝑎aitalic_a, b3𝑏superscript3b\in\mathbb{C}^{3}italic_b ∈ blackboard_C start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT and be1perpendicular-to𝑏subscript𝑒1b\perp e_{1}italic_b ⟂ italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT. Suppose aspan{e1}𝑎spansubscript𝑒1a\notin\mathrm{span}\{e_{1}\}italic_a ∉ roman_span { italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT } (otherwise, we are in the case (a)). We claim that ϕ(ab)=uvM3italic-ϕ𝑎superscript𝑏𝑢superscript𝑣subscript𝑀3\phi(ab^{\ast})=uv^{\ast}\in M_{3}italic_ϕ ( italic_a italic_b start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) = italic_u italic_v start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∈ italic_M start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT for some nonzero vectors u𝑢uitalic_u, v𝑣vitalic_v. Indeed, if ab𝑎superscript𝑏ab^{\ast}italic_a italic_b start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT is non-nilpotent, then it is diagonalizable. We then apply that the multiplicities of all eigenvalues are preserved. If ab𝑎superscript𝑏ab^{\ast}italic_a italic_b start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT is nilpotent, it can be considered as a limit of a rank-one non-nilpotent matrix. By lower semicontinuity, the rank can only decrease. Obviously, ab𝑎superscript𝑏ab^{\ast}italic_a italic_b start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT commutes with e1(a)subscript𝑒1superscriptsuperscript𝑎perpendicular-toe_{1}(a^{\perp})^{\ast}italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_a start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT for any vector asuperscript𝑎perpendicular-toa^{\perp}italic_a start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT orthogonal to a𝑎aitalic_a. From (a) we already know that ϕ(e1(a))=e1(a)italic-ϕsubscript𝑒1superscriptsuperscript𝑎perpendicular-tosubscript𝑒1superscriptsuperscript𝑎perpendicular-to\phi(e_{1}(a^{\perp})^{\ast})=e_{1}(a^{\perp})^{\ast}italic_ϕ ( italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_a start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) = italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_a start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT. So,

(4.3)(ve1)u(a)=uve1(a)=e1(a)uv=((a)u)e1v.superscript𝑣subscript𝑒1𝑢superscriptsuperscript𝑎perpendicular-to𝑢superscript𝑣subscript𝑒1superscriptsuperscript𝑎perpendicular-tosubscript𝑒1superscriptsuperscript𝑎perpendicular-to𝑢superscript𝑣superscriptsuperscript𝑎perpendicular-to𝑢subscript𝑒1superscript𝑣(v^{*}e_{1})u(a^{\perp})^{\ast}=uv^{\ast}e_{1}(a^{\perp})^{\ast}=e_{1}(a^{%\perp})^{\ast}uv^{\ast}=((a^{\perp})^{\ast}u)e_{1}v^{\ast}.( italic_v start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_u ( italic_a start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = italic_u italic_v start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_a start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_a start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_u italic_v start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = ( ( italic_a start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_u ) italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_v start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT .

We claim that ve1perpendicular-to𝑣subscript𝑒1v\perp e_{1}italic_v ⟂ italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and uaperpendicular-to𝑢superscript𝑎perpendicular-tou\perp a^{\perp}italic_u ⟂ italic_a start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT. Suppose the contrary. Then, since both u(a)𝑢superscriptsuperscript𝑎perpendicular-tou(a^{\perp})^{\ast}italic_u ( italic_a start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT and e1vsubscript𝑒1superscript𝑣e_{1}v^{\ast}italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_v start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT are nonzero, (4.3) shows that both ve1superscript𝑣subscript𝑒1v^{*}e_{1}italic_v start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and (a)usuperscriptsuperscript𝑎perpendicular-to𝑢(a^{\perp})^{\ast}u( italic_a start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_u are zero or both nonzero. If they are nonzero, we have uspan{e1}𝑢spansubscript𝑒1u\in\mathrm{span}\{e_{1}\}italic_u ∈ roman_span { italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT }, which conflicts injectivity. Therefore, ve1perpendicular-to𝑣subscript𝑒1v\perp e_{1}italic_v ⟂ italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and uaperpendicular-to𝑢superscript𝑎perpendicular-tou\perp a^{\perp}italic_u ⟂ italic_a start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPTand so, u({a})=a𝑢superscriptsuperscript𝑎perpendicular-toperpendicular-to𝑎u\in(\{a\}^{\perp})^{\perp}=\mathbb{C}aitalic_u ∈ ( { italic_a } start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT = blackboard_C italic_a. Without loss of any generality, we can assume u=a𝑢𝑎u=aitalic_u = italic_a, and the scalar factor can be absorbed in v𝑣vitalic_v. So far we have obtained that ϕ(ab)=av𝒜italic-ϕ𝑎superscript𝑏𝑎superscript𝑣𝒜\phi(ab^{\ast})=av^{\ast}\in\mathcal{A}italic_ϕ ( italic_a italic_b start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) = italic_a italic_v start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∈ caligraphic_A for some vector ve1perpendicular-to𝑣subscript𝑒1v\perp e_{1}italic_v ⟂ italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT which depends on a𝑎aitalic_a and b𝑏bitalic_b. On the other hand, ab𝑎superscript𝑏ab^{\ast}italic_a italic_b start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT commutes with (b)csuperscript𝑏perpendicular-tosuperscript𝑐(b^{\perp})c^{\ast}( italic_b start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT ) italic_c start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT (which is possibly nilpotent), where bbperpendicular-tosuperscript𝑏perpendicular-to𝑏b^{\perp}\perp bitalic_b start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT ⟂ italic_b and c{e1,a}𝑐superscriptsubscript𝑒1𝑎perpendicular-toc\in\{e_{1},a\}^{\perp}italic_c ∈ { italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_a } start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT. From the previous argument, we know that ϕ(bc)=bwitalic-ϕsuperscript𝑏perpendicular-tosuperscript𝑐superscript𝑏perpendicular-tosuperscript𝑤\phi(b^{\perp}c^{\ast})=b^{\perp}w^{\ast}italic_ϕ ( italic_b start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT italic_c start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) = italic_b start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT italic_w start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT for some w0𝑤0w\neq 0italic_w ≠ 0. Then ϕ(ab)=avbw=ϕ(bc)italic-ϕ𝑎superscript𝑏𝑎superscript𝑣superscript𝑏perpendicular-tosuperscript𝑤italic-ϕsuperscript𝑏perpendicular-tosuperscript𝑐\phi(ab^{\ast})=av^{\ast}\leftrightarrow b^{\perp}w^{\ast}=\phi(b^{\perp}c^{%\ast})italic_ϕ ( italic_a italic_b start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) = italic_a italic_v start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ↔ italic_b start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT italic_w start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = italic_ϕ ( italic_b start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT italic_c start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ). This gives

(vb)aw=avbw=bwav=(wa)bv.superscript𝑣superscript𝑏perpendicular-to𝑎superscript𝑤𝑎superscript𝑣superscript𝑏perpendicular-tosuperscript𝑤superscript𝑏perpendicular-tosuperscript𝑤𝑎superscript𝑣superscript𝑤𝑎superscript𝑏perpendicular-tosuperscript𝑣(v^{\ast}b^{\perp})aw^{\ast}=av^{*}b^{\perp}w^{*}=b^{\perp}w^{*}av^{*}=(w^{%\ast}a)b^{\perp}v^{\ast}.( italic_v start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_b start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT ) italic_a italic_w start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = italic_a italic_v start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_b start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT italic_w start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = italic_b start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT italic_w start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_a italic_v start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = ( italic_w start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_a ) italic_b start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT italic_v start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT .

At this point assume that ab𝑎superscript𝑏ab^{\ast}italic_a italic_b start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT is not nilpotent, i.e.b𝑏bitalic_b is not orthogonal to a𝑎aitalic_a. Then bsuperscript𝑏perpendicular-tob^{\perp}italic_b start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT (defined up to a scalar factor) and a𝑎aitalic_a are linearly independent, hence vb=0superscript𝑣superscript𝑏perpendicular-to0v^{\ast}b^{\perp}=0italic_v start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_b start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT = 0. This implies that v=βb𝑣𝛽𝑏v=\beta bitalic_v = italic_β italic_b for some scalar β0𝛽0\beta\neq 0italic_β ≠ 0. From the spectrum preserving property, comparing the traces, we get that β=1𝛽1\beta=1italic_β = 1, and we are done.

Step 4.3 (Conclusion of the base step).

ϕ(A)=Aitalic-ϕ𝐴𝐴\phi(A)=Aitalic_ϕ ( italic_A ) = italic_A for all matrices A𝒜M3𝐴𝒜subscript𝑀3A\in\mathcal{A}\subset M_{3}italic_A ∈ caligraphic_A ⊂ italic_M start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT.

By density, it suffices to prove that ϕitalic-ϕ\phiitalic_ϕ is the identity map on the set of matrices in 𝒜𝒜\mathcal{A}caligraphic_A with 3333 distinct eigenvalues. By Lemma 2.2 for every matrix A𝐴Aitalic_A of this kind there exists a matrix S𝒜×𝑆superscript𝒜S\in\mathcal{A}^{\times}italic_S ∈ caligraphic_A start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT and a diagonal matrix D𝐷Ditalic_D such that A=SDS1𝐴𝑆𝐷superscript𝑆1A=SDS^{-1}italic_A = italic_S italic_D italic_S start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT. Applying Step 1 for the map Xϕ(SXS1)maps-to𝑋italic-ϕ𝑆𝑋superscript𝑆1X\mapsto\phi(SXS^{-1})italic_X ↦ italic_ϕ ( italic_S italic_X italic_S start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) we get that there exists a TM3×𝑇superscriptsubscript𝑀3T\in M_{3}^{\times}italic_T ∈ italic_M start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT such that

ϕ(SDS1)=TDT1,for allD𝒟3.formulae-sequenceitalic-ϕ𝑆𝐷superscript𝑆1𝑇𝐷superscript𝑇1for all𝐷subscript𝒟3\phi(SDS^{-1})=TDT^{-1},\quad\text{ for all }D\in\mathcal{D}_{3}.italic_ϕ ( italic_S italic_D italic_S start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) = italic_T italic_D italic_T start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT , for all italic_D ∈ caligraphic_D start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT .

By Step 4.2 we also have

SEjjS1=ϕ(SEjjS1)=TEjjT1,1j3,formulae-sequence𝑆subscript𝐸𝑗𝑗superscript𝑆1italic-ϕ𝑆subscript𝐸𝑗𝑗superscript𝑆1𝑇subscript𝐸𝑗𝑗superscript𝑇11𝑗3SE_{jj}S^{-1}=\phi(SE_{jj}S^{-1})=TE_{jj}T^{-1},\qquad 1\leq j\leq 3,italic_S italic_E start_POSTSUBSCRIPT italic_j italic_j end_POSTSUBSCRIPT italic_S start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = italic_ϕ ( italic_S italic_E start_POSTSUBSCRIPT italic_j italic_j end_POSTSUBSCRIPT italic_S start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) = italic_T italic_E start_POSTSUBSCRIPT italic_j italic_j end_POSTSUBSCRIPT italic_T start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT , 1 ≤ italic_j ≤ 3 ,

so by linearity TDT1=SDS1𝑇𝐷superscript𝑇1𝑆𝐷superscript𝑆1TDT^{-1}=SDS^{-1}italic_T italic_D italic_T start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = italic_S italic_D italic_S start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT and consequently,

ϕ(SDS1)=TDT1=SDS1italic-ϕ𝑆𝐷superscript𝑆1𝑇𝐷superscript𝑇1𝑆𝐷superscript𝑆1\phi(SDS^{-1})=TDT^{-1}=SDS^{-1}italic_ϕ ( italic_S italic_D italic_S start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) = italic_T italic_D italic_T start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = italic_S italic_D italic_S start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT

for all diagonal matrices D𝐷Ditalic_D. We conclude that ϕitalic-ϕ\phiitalic_ϕ is the identity map.

Step 5 (Induction step).

By way of induction, suppose that n4𝑛4n\geq 4italic_n ≥ 4 and that Theorem 1.4 holds for n1𝑛1n-1italic_n - 1.

By Step 1, we can assume without loss of any generality, that ϕ(D)=Ditalic-ϕ𝐷𝐷\phi(D)=Ditalic_ϕ ( italic_D ) = italic_D for any diagonal matrix D𝐷Ditalic_D and, in particular, ϕ(Eii)=Eiiitalic-ϕsubscript𝐸𝑖𝑖subscript𝐸𝑖𝑖\phi(E_{ii})=E_{ii}italic_ϕ ( italic_E start_POSTSUBSCRIPT italic_i italic_i end_POSTSUBSCRIPT ) = italic_E start_POSTSUBSCRIPT italic_i italic_i end_POSTSUBSCRIPT for all 1in1𝑖𝑛1\leq i\leq n1 ≤ italic_i ≤ italic_n.

Step 5.1.

There exists a diagonal matrix T𝑇Titalic_T such that ϕ(A)=TAT1italic-ϕ𝐴𝑇𝐴superscript𝑇1\phi(A)=TAT^{-1}italic_ϕ ( italic_A ) = italic_T italic_A italic_T start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT for all A𝒜Ess𝐴𝒜superscriptsubscript𝐸𝑠𝑠perpendicular-toA\in\mathcal{A}\cap E_{ss}^{\perp}italic_A ∈ caligraphic_A ∩ italic_E start_POSTSUBSCRIPT italic_s italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT, 1sn1𝑠𝑛1\leq s\leq n1 ≤ italic_s ≤ italic_n or, ϕ(A)=TAtT1italic-ϕ𝐴𝑇superscript𝐴𝑡superscript𝑇1\phi(A)=TA^{t}T^{-1}italic_ϕ ( italic_A ) = italic_T italic_A start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_T start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT for all A𝒜Ess𝐴𝒜superscriptsubscript𝐸𝑠𝑠perpendicular-toA\in\mathcal{A}\cap E_{ss}^{\perp}italic_A ∈ caligraphic_A ∩ italic_E start_POSTSUBSCRIPT italic_s italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT, 1sn1𝑠𝑛1\leq s\leq n1 ≤ italic_s ≤ italic_n.

Proof.

By continuity of ϕitalic-ϕ\phiitalic_ϕ it suffices to consider only diagonalizable matrices. By Step 2, for any diagonalizable matrix A𝒜Ess𝐴𝒜superscriptsubscript𝐸𝑠𝑠perpendicular-toA\in\mathcal{A}\cap E_{ss}^{\perp}italic_A ∈ caligraphic_A ∩ italic_E start_POSTSUBSCRIPT italic_s italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT we have that ϕ(A)Essitalic-ϕ𝐴superscriptsubscript𝐸𝑠𝑠perpendicular-to\phi(A)\in E_{ss}^{\perp}italic_ϕ ( italic_A ) ∈ italic_E start_POSTSUBSCRIPT italic_s italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT. By the induction hypothesis, for each 1sn1𝑠𝑛1\leq s\leq n1 ≤ italic_s ≤ italic_n there exists an invertible matrix TsMn×subscript𝑇𝑠superscriptsubscript𝑀𝑛T_{s}\in M_{n}^{\times}italic_T start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ∈ italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT commuting with Esssubscript𝐸𝑠𝑠E_{ss}italic_E start_POSTSUBSCRIPT italic_s italic_s end_POSTSUBSCRIPT such that the map ϕitalic-ϕ\phiitalic_ϕ satisfies

(4.4)ϕ(A)=TsATs1,A𝒜Ess,formulae-sequenceitalic-ϕ𝐴subscript𝑇𝑠𝐴superscriptsubscript𝑇𝑠1𝐴𝒜superscriptsubscript𝐸𝑠𝑠perpendicular-to\phi(A)=T_{s}AT_{s}^{-1},\ \ \ A\in\mathcal{A}\cap E_{ss}^{\perp},italic_ϕ ( italic_A ) = italic_T start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_A italic_T start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT , italic_A ∈ caligraphic_A ∩ italic_E start_POSTSUBSCRIPT italic_s italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT ,

or

ϕ(A)=TsAtTs1,A𝒜Ess.formulae-sequenceitalic-ϕ𝐴subscript𝑇𝑠superscript𝐴𝑡superscriptsubscript𝑇𝑠1𝐴𝒜superscriptsubscript𝐸𝑠𝑠perpendicular-to\phi(A)=T_{s}A^{t}T_{s}^{-1},\ \ \ A\in\mathcal{A}\cap E_{ss}^{\perp}.italic_ϕ ( italic_A ) = italic_T start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_A start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT , italic_A ∈ caligraphic_A ∩ italic_E start_POSTSUBSCRIPT italic_s italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT .

The matrix Tssubscript𝑇𝑠T_{s}italic_T start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT is diagonal by our assumption preceding this step, and so, let Ts=diag(t1(s),,tn(s))subscript𝑇𝑠diagsubscriptsuperscript𝑡𝑠1subscriptsuperscript𝑡𝑠𝑛T_{s}=\operatorname{diag}(t^{(s)}_{1},\dots,t^{(s)}_{n})italic_T start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT = roman_diag ( italic_t start_POSTSUPERSCRIPT ( italic_s ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_t start_POSTSUPERSCRIPT ( italic_s ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ). We can set the s𝑠sitalic_s-th diagonal entry of Tssubscript𝑇𝑠T_{s}italic_T start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT to be equal to 1111 for every s𝑠sitalic_s. We may and we do assume that ϕitalic-ϕ\phiitalic_ϕ is of the form (4.4) when s=1𝑠1s=1italic_s = 1.Replacing ϕitalic-ϕ\phiitalic_ϕ by a map XT11XT1maps-to𝑋superscriptsubscript𝑇11𝑋subscript𝑇1X\mapsto T_{1}^{-1}XT_{1}italic_X ↦ italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_X italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT we can assume that T1=Isubscript𝑇1𝐼T_{1}=Iitalic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_I. Let s1𝑠1s\neq 1italic_s ≠ 1. Applying that for every AE11Ess𝒜𝐴superscriptsubscript𝐸11perpendicular-tosuperscriptsubscript𝐸𝑠𝑠perpendicular-to𝒜A\in E_{11}^{\perp}\cap E_{ss}^{\perp}\cap\mathcal{A}italic_A ∈ italic_E start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT ∩ italic_E start_POSTSUBSCRIPT italic_s italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT ∩ caligraphic_A holds ϕ(A)=T1AT11=Aitalic-ϕ𝐴subscript𝑇1𝐴superscriptsubscript𝑇11𝐴\phi(A)=T_{1}AT_{1}^{-1}=Aitalic_ϕ ( italic_A ) = italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_A italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = italic_A and that E11Ess𝒜superscriptsubscript𝐸11perpendicular-tosuperscriptsubscript𝐸𝑠𝑠perpendicular-to𝒜E_{11}^{\perp}\cap E_{ss}^{\perp}\cap\mathcal{A}italic_E start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT ∩ italic_E start_POSTSUBSCRIPT italic_s italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT ∩ caligraphic_A contains at least span{Ejj,Ekk,Ejk}spansubscript𝐸𝑗𝑗subscript𝐸𝑘𝑘subscript𝐸𝑗𝑘\mathrm{span}\{E_{jj},E_{kk},E_{jk}\}roman_span { italic_E start_POSTSUBSCRIPT italic_j italic_j end_POSTSUBSCRIPT , italic_E start_POSTSUBSCRIPT italic_k italic_k end_POSTSUBSCRIPT , italic_E start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT } for some 1<j<kn1𝑗𝑘𝑛1<j<k\leq n1 < italic_j < italic_k ≤ italic_n as n4𝑛4n\geq 4italic_n ≥ 4, we conclude that ϕitalic-ϕ\phiitalic_ϕ is of the form (4.4) on Ess𝒜superscriptsubscript𝐸𝑠𝑠perpendicular-to𝒜E_{ss}^{\perp}\cap\mathcal{A}italic_E start_POSTSUBSCRIPT italic_s italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT ∩ caligraphic_A since otherwise the restriction of ϕitalic-ϕ\phiitalic_ϕ to E11Ess𝒜superscriptsubscript𝐸11perpendicular-tosuperscriptsubscript𝐸𝑠𝑠perpendicular-to𝒜E_{11}^{\perp}\cap E_{ss}^{\perp}\cap\mathcal{A}italic_E start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT ∩ italic_E start_POSTSUBSCRIPT italic_s italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT ∩ caligraphic_A would be multiplicative and anti-multiplicative simultaneously. Comparing the action of ϕitalic-ϕ\phiitalic_ϕ on different subspaces E11Ess𝒜superscriptsubscript𝐸11perpendicular-tosuperscriptsubscript𝐸𝑠𝑠perpendicular-to𝒜E_{11}^{\perp}\cap E_{ss}^{\perp}\cap\mathcal{A}italic_E start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT ∩ italic_E start_POSTSUBSCRIPT italic_s italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT ∩ caligraphic_A one observes that all Tssubscript𝑇𝑠T_{s}italic_T start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT, s1𝑠1s\neq 1italic_s ≠ 1, possibly differ from T1=Isubscript𝑇1𝐼T_{1}=Iitalic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_I only in the first term. Additionally, for every 1<k,snformulae-sequence1𝑘𝑠𝑛1<k,s\leq n1 < italic_k , italic_s ≤ italic_n, ks𝑘𝑠k\neq sitalic_k ≠ italic_s, we have

ϕ(E1k)=TsE1kTs1=t1(s)tk(s)E1k=t1(s)E1kitalic-ϕsubscript𝐸1𝑘subscript𝑇𝑠subscript𝐸1𝑘superscriptsubscript𝑇𝑠1subscriptsuperscript𝑡𝑠1subscriptsuperscript𝑡𝑠𝑘subscript𝐸1𝑘subscriptsuperscript𝑡𝑠1subscript𝐸1𝑘\phi(E_{1k})=T_{s}E_{1k}T_{s}^{-1}=\frac{t^{(s)}_{1}}{t^{(s)}_{k}}E_{1k}=t^{(s%)}_{1}E_{1k}italic_ϕ ( italic_E start_POSTSUBSCRIPT 1 italic_k end_POSTSUBSCRIPT ) = italic_T start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT 1 italic_k end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = divide start_ARG italic_t start_POSTSUPERSCRIPT ( italic_s ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_t start_POSTSUPERSCRIPT ( italic_s ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_ARG italic_E start_POSTSUBSCRIPT 1 italic_k end_POSTSUBSCRIPT = italic_t start_POSTSUPERSCRIPT ( italic_s ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT 1 italic_k end_POSTSUBSCRIPT

so, t1(s)subscriptsuperscript𝑡𝑠1t^{(s)}_{1}italic_t start_POSTSUPERSCRIPT ( italic_s ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT is in fact independent of s𝑠sitalic_s. Hence T2=T3==Tn=:T0T_{2}=T_{3}=\dots=T_{n}=:T_{0}italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_T start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT = ⋯ = italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = : italic_T start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. Replacing ϕitalic-ϕ\phiitalic_ϕ by XT01ϕ(X)T0maps-to𝑋superscriptsubscript𝑇01italic-ϕ𝑋subscript𝑇0X\mapsto T_{0}^{-1}\phi(X)T_{0}italic_X ↦ italic_T start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_ϕ ( italic_X ) italic_T start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT does not affect the action of ϕitalic-ϕ\phiitalic_ϕ on E11superscriptsubscript𝐸11perpendicular-toE_{11}^{\perp}italic_E start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT, so we have obtained that ϕ(Eij)=Eijitalic-ϕsubscript𝐸𝑖𝑗subscript𝐸𝑖𝑗\phi(E_{ij})=E_{ij}italic_ϕ ( italic_E start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ) = italic_E start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT for every Eij𝒜subscript𝐸𝑖𝑗𝒜E_{ij}\in\mathcal{A}italic_E start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ∈ caligraphic_A. ∎

By the previous Step we assume that ϕ(A)=Aitalic-ϕ𝐴𝐴\phi(A)=Aitalic_ϕ ( italic_A ) = italic_A for every matrix AEss𝒜𝐴superscriptsubscript𝐸𝑠𝑠perpendicular-to𝒜A\in E_{ss}^{\perp}\cap\mathcal{A}italic_A ∈ italic_E start_POSTSUBSCRIPT italic_s italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ⟂ end_POSTSUPERSCRIPT ∩ caligraphic_A, s=1,2,,n𝑠12𝑛s=1,2,\dots,nitalic_s = 1 , 2 , … , italic_n.

Step 5.2.

ϕ(R)=Ritalic-ϕ𝑅𝑅\phi(R)=Ritalic_ϕ ( italic_R ) = italic_R for every rank-one matrix R𝒜Mn𝑅𝒜subscript𝑀𝑛R\in\mathcal{A}\subsetneq M_{n}italic_R ∈ caligraphic_A ⊊ italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT.

Proof.

It suffices to consider only idempotent matrices R𝑅Ritalic_R due to the continuity and hom*ogeneity of ϕitalic-ϕ\phiitalic_ϕ.

We first show that ϕ(R)=Ritalic-ϕ𝑅𝑅\phi(R)=Ritalic_ϕ ( italic_R ) = italic_R for every matrix R𝑅Ritalic_R supported in the first row. By Lemma 4.2, such a matrix can be written as R=S1(y)1E11S1(y)𝑅subscript𝑆1superscript𝑦1subscript𝐸11subscript𝑆1𝑦R=S_{1}(y)^{-1}E_{11}S_{1}(y)italic_R = italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_y ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_E start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_y ) for some y=i=1nyiei𝑦superscriptsubscript𝑖1𝑛subscript𝑦𝑖subscript𝑒𝑖y=\sum_{i=1}^{n}y_{i}e_{i}italic_y = ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_e start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT. Applying Step 3 we observe that for every i1𝑖1i\neq 1italic_i ≠ 1 and Ri:=S1(y)1EiiS1(y)=EiiyiE1iEnnassignsubscript𝑅𝑖subscript𝑆1superscript𝑦1subscript𝐸𝑖𝑖subscript𝑆1𝑦subscript𝐸𝑖𝑖subscript𝑦𝑖subscript𝐸1𝑖perpendicular-tosubscript𝐸𝑛𝑛R_{i}:=S_{1}(y)^{-1}E_{ii}S_{1}(y)=E_{ii}-y_{i}E_{1i}\perp E_{nn}italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT := italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_y ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_E start_POSTSUBSCRIPT italic_i italic_i end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_y ) = italic_E start_POSTSUBSCRIPT italic_i italic_i end_POSTSUBSCRIPT - italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT 1 italic_i end_POSTSUBSCRIPT ⟂ italic_E start_POSTSUBSCRIPT italic_n italic_n end_POSTSUBSCRIPT when in𝑖𝑛i\neq nitalic_i ≠ italic_n and RnE22perpendicular-tosubscript𝑅𝑛subscript𝐸22R_{n}\perp E_{22}italic_R start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ⟂ italic_E start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT. Therefore, ϕ(Ri)=Riitalic-ϕsubscript𝑅𝑖subscript𝑅𝑖\phi(R_{i})=R_{i}italic_ϕ ( italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) = italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT for every i=2,,n𝑖2𝑛i=2,\dots,nitalic_i = 2 , … , italic_n and thus, by Step 3, ϕ(R)=Ritalic-ϕ𝑅𝑅\phi(R)=Ritalic_ϕ ( italic_R ) = italic_R. A very similar argument works in the case that R𝑅Ritalic_R is supported only in the last column as it can then be represented as R=Tn(x)EnnTn(x)1𝑅subscript𝑇𝑛𝑥subscript𝐸𝑛𝑛subscript𝑇𝑛superscript𝑥1R=T_{n}(x)E_{nn}T_{n}(x)^{-1}italic_R = italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_x ) italic_E start_POSTSUBSCRIPT italic_n italic_n end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_x ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT for some x=i=1nxiei𝑥superscriptsubscript𝑖1𝑛subscript𝑥𝑖subscript𝑒𝑖x=\sum_{i=1}^{n}x_{i}e_{i}italic_x = ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_e start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT.

Let further R𝑅Ritalic_R be supported in the first block-row but not in the first row. Then, for a block diagonal unitary matrix U𝒜𝑈𝒜U\in\mathcal{A}italic_U ∈ caligraphic_A, satisfying Uen=en=Uen𝑈subscript𝑒𝑛subscript𝑒𝑛superscript𝑈subscript𝑒𝑛Ue_{n}=e_{n}=U^{\ast}e_{n}italic_U italic_e start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_e start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_U start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_e start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, we have R=US1(y)1E11S1(y)U𝑅superscript𝑈subscript𝑆1superscript𝑦1subscript𝐸11subscript𝑆1𝑦𝑈R=U^{\ast}S_{1}(y)^{-1}E_{11}S_{1}(y)Uitalic_R = italic_U start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_y ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_E start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_y ) italic_U. Indeed, by Schur’s triangularization, there exists a unitary matrix VMk1𝑉subscript𝑀subscript𝑘1V\in M_{k_{1}}italic_V ∈ italic_M start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT which upper-triangularizes the first block of R𝑅Ritalic_R such that the diagonal is exactly 1,0,,01001,0,\ldots,01 , 0 , … , 0. Then we can set U:=diag(V,I)𝒜assign𝑈diag𝑉𝐼𝒜U:=\operatorname{diag}(V,I)\in\mathcal{A}italic_U := roman_diag ( italic_V , italic_I ) ∈ caligraphic_A. For 1<in1𝑖𝑛1<i\leq n1 < italic_i ≤ italic_n consider

Ri:=US1(y)1EiiS1(y)U=U(EiiyiE1i)U.assignsubscript𝑅𝑖superscript𝑈subscript𝑆1superscript𝑦1subscript𝐸𝑖𝑖subscript𝑆1𝑦𝑈superscript𝑈subscript𝐸𝑖𝑖subscript𝑦𝑖subscript𝐸1𝑖𝑈R_{i}:=U^{\ast}S_{1}(y)^{-1}E_{ii}S_{1}(y)U=U^{\ast}(E_{ii}-y_{i}E_{1i})U.italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT := italic_U start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_y ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_E start_POSTSUBSCRIPT italic_i italic_i end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_y ) italic_U = italic_U start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_E start_POSTSUBSCRIPT italic_i italic_i end_POSTSUBSCRIPT - italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT 1 italic_i end_POSTSUBSCRIPT ) italic_U .

It is not difficult to see that for every 1<i<n1𝑖𝑛1<i<n1 < italic_i < italic_n, we have RiEnnperpendicular-tosubscript𝑅𝑖subscript𝐸𝑛𝑛R_{i}\perp E_{nn}italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ⟂ italic_E start_POSTSUBSCRIPT italic_n italic_n end_POSTSUBSCRIPT, and so, ϕ(Ri)=Riitalic-ϕsubscript𝑅𝑖subscript𝑅𝑖\phi(R_{i})=R_{i}italic_ϕ ( italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) = italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT. On the other hand, for i=n𝑖𝑛i=nitalic_i = italic_n, observe that Rnsubscript𝑅𝑛R_{n}italic_R start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT is supported in the last column and hence, by the argument in the previous paragraph, ϕ(Rn)=Rnitalic-ϕsubscript𝑅𝑛subscript𝑅𝑛\phi(R_{n})=R_{n}italic_ϕ ( italic_R start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) = italic_R start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT. Then Step 3 closes this part. In the same spirit we handle the case when R𝑅Ritalic_R is supported in the last block-column. We are done if 𝒜=𝒜k1,k2𝒜subscript𝒜subscript𝑘1subscript𝑘2\mathcal{A}=\mathcal{A}_{k_{1},k_{2}}caligraphic_A = caligraphic_A start_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT.

Further, suppose that the number of diagonal blocks in 𝒜𝒜\mathcal{A}caligraphic_A is greater than 2222 and that R𝑅Ritalic_R is supported in k𝑘kitalic_k-th block-row or block-column for some 1<k<n1𝑘𝑛1<k<n1 < italic_k < italic_n. By unitary triangularization, we have that R=UTkSk1EkkSkTk1U𝑅superscript𝑈subscript𝑇𝑘superscriptsubscript𝑆𝑘1subscript𝐸𝑘𝑘subscript𝑆𝑘superscriptsubscript𝑇𝑘1𝑈R=U^{*}T_{k}S_{k}^{-1}E_{kk}S_{k}T_{k}^{-1}Uitalic_R = italic_U start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_E start_POSTSUBSCRIPT italic_k italic_k end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_U for some 1<k<n1𝑘𝑛1<k<n1 < italic_k < italic_n, a unitary matrix block-diagonal matrix U𝒜𝑈𝒜U\in\mathcal{A}italic_U ∈ caligraphic_A satisfying Ue1=e1=Ue1𝑈subscript𝑒1subscript𝑒1superscript𝑈subscript𝑒1Ue_{1}=e_{1}=U^{\ast}e_{1}italic_U italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_U start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and Uen=en=Uen𝑈subscript𝑒𝑛subscript𝑒𝑛superscript𝑈subscript𝑒𝑛Ue_{n}=e_{n}=U^{\ast}e_{n}italic_U italic_e start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_e start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_U start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_e start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Sk=Sk(y)subscript𝑆𝑘subscript𝑆𝑘𝑦S_{k}=S_{k}(y)italic_S start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = italic_S start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_y ) and Tk=Tk(x)subscript𝑇𝑘subscript𝑇𝑘𝑥T_{k}=T_{k}(x)italic_T start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = italic_T start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_x ) are as in Lemma 4.2. Similarly as before, for ik𝑖𝑘i\neq kitalic_i ≠ italic_k consider

Ri:=UTkSk1EiiSkTk1U.assignsubscript𝑅𝑖superscript𝑈subscript𝑇𝑘superscriptsubscript𝑆𝑘1subscript𝐸𝑖𝑖subscript𝑆𝑘superscriptsubscript𝑇𝑘1𝑈R_{i}:=U^{\ast}T_{k}S_{k}^{-1}E_{ii}S_{k}T_{k}^{-1}U.italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT := italic_U start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_E start_POSTSUBSCRIPT italic_i italic_i end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_U .

For every i<k𝑖𝑘i<kitalic_i < italic_k, by a direct computation we obtain that RiEnnperpendicular-tosubscript𝑅𝑖subscript𝐸𝑛𝑛R_{i}\perp E_{nn}italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ⟂ italic_E start_POSTSUBSCRIPT italic_n italic_n end_POSTSUBSCRIPT and so, ϕ(Ri)=Riitalic-ϕsubscript𝑅𝑖subscript𝑅𝑖\phi(R_{i})=R_{i}italic_ϕ ( italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) = italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT. If i>k𝑖𝑘i>kitalic_i > italic_k, then RiE11perpendicular-tosubscript𝑅𝑖subscript𝐸11R_{i}\perp E_{11}italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ⟂ italic_E start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT and hence, ϕ(Ri)=Riitalic-ϕsubscript𝑅𝑖subscript𝑅𝑖\phi(R_{i})=R_{i}italic_ϕ ( italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) = italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT. Finally Step 3 gives ϕ(R)=Ritalic-ϕ𝑅𝑅\phi(R)=Ritalic_ϕ ( italic_R ) = italic_R as desired.∎

Step 6 (Conclusion of the inductive step).

ϕ(A)=Aitalic-ϕ𝐴𝐴\phi(A)=Aitalic_ϕ ( italic_A ) = italic_A for all matrices A𝒜𝐴𝒜A\in\mathcal{A}italic_A ∈ caligraphic_A.

Proof.

The verification of this step is essentially the same as in Step 6 for the 3×3333\times 33 × 3 case.∎

Theorem 4.3.

Let 𝒜,Mn𝒜subscript𝑀𝑛\mathcal{A},\mathcal{B}\subseteq M_{n}caligraphic_A , caligraphic_B ⊆ italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT be two block upper-triangular algebras and let ϕ:𝒜:italic-ϕ𝒜\phi:\mathcal{A}\to\mathcal{B}italic_ϕ : caligraphic_A → caligraphic_B be a continuous injective spectrum and commutativity preserving map. Then one of the following is true:

  • 𝒜𝒜\mathcal{A}\subseteq\mathcal{B}caligraphic_A ⊆ caligraphic_B and there exists T×𝑇superscriptT\in\mathcal{B}^{\times}italic_T ∈ caligraphic_B start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT such that ϕ(X)=TXT1italic-ϕ𝑋𝑇𝑋superscript𝑇1\phi(X)=TXT^{-1}italic_ϕ ( italic_X ) = italic_T italic_X italic_T start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT for all X𝒜𝑋𝒜X\in\mathcal{A}italic_X ∈ caligraphic_A.

  • 𝒜superscript𝒜direct-product\mathcal{A}^{\odot}\subseteq\mathcal{B}caligraphic_A start_POSTSUPERSCRIPT ⊙ end_POSTSUPERSCRIPT ⊆ caligraphic_B and there exists T×𝑇superscriptT\in\mathcal{B}^{\times}italic_T ∈ caligraphic_B start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT such that ϕ(X)=TXT1italic-ϕ𝑋𝑇superscript𝑋direct-productsuperscript𝑇1\phi(X)=TX^{\odot}T^{-1}italic_ϕ ( italic_X ) = italic_T italic_X start_POSTSUPERSCRIPT ⊙ end_POSTSUPERSCRIPT italic_T start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT for all X𝒜𝑋𝒜X\in\mathcal{A}italic_X ∈ caligraphic_A.

Proof.

Theorem 1.4 implies that ϕitalic-ϕ\phiitalic_ϕ is a Jordan embedding. The rest of the result follows from Corollary 3.1.∎

When we further assume that =𝒜𝒜\mathcal{B}=\mathcal{A}caligraphic_B = caligraphic_A, so that ϕ:𝒜𝒜:italic-ϕ𝒜𝒜\phi:\mathcal{A}\to\mathcal{A}italic_ϕ : caligraphic_A → caligraphic_A, we can relax the spectrum preserving assumption to spectrum shrinking (σ(ϕ(X))σ(X)𝜎italic-ϕ𝑋𝜎𝑋\sigma(\phi(X))\subseteq\sigma(X)italic_σ ( italic_ϕ ( italic_X ) ) ⊆ italic_σ ( italic_X ) for all X𝒜𝑋𝒜X\in\mathcal{A}italic_X ∈ caligraphic_A). More precisely, we obtain the following result (similarly as in [33], the proof relies on the invariance of domain theorem).

Corollary 4.4.

Let 𝒜Mn𝒜subscript𝑀𝑛\mathcal{A}\subseteq M_{n}caligraphic_A ⊆ italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT be a block upper-triangular algebra and let ϕ:𝒜𝒜:italic-ϕ𝒜𝒜\phi:\mathcal{A}\to\mathcal{A}italic_ϕ : caligraphic_A → caligraphic_A be a continuous injective commutativity preserving spectrum shrinking map. Then one of the following is true:

  • There exists T𝒜×𝑇superscript𝒜T\in\mathcal{A}^{\times}italic_T ∈ caligraphic_A start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT such that ϕ(X)=TXT1italic-ϕ𝑋𝑇𝑋superscript𝑇1\phi(X)=TXT^{-1}italic_ϕ ( italic_X ) = italic_T italic_X italic_T start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT for all X𝒜𝑋𝒜X\in\mathcal{A}italic_X ∈ caligraphic_A.

  • 𝒜=𝒜superscript𝒜direct-product𝒜\mathcal{A}^{\odot}=\mathcal{A}caligraphic_A start_POSTSUPERSCRIPT ⊙ end_POSTSUPERSCRIPT = caligraphic_A and there exists T𝒜×𝑇superscript𝒜T\in\mathcal{A}^{\times}italic_T ∈ caligraphic_A start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT such that ϕ(X)=TXT1italic-ϕ𝑋𝑇superscript𝑋direct-productsuperscript𝑇1\phi(X)=TX^{\odot}T^{-1}italic_ϕ ( italic_X ) = italic_T italic_X start_POSTSUPERSCRIPT ⊙ end_POSTSUPERSCRIPT italic_T start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT for all X𝒜𝑋𝒜X\in\mathcal{A}italic_X ∈ caligraphic_A.

Proof.

We shall prove that ϕitalic-ϕ\phiitalic_ϕ actually preserves the spectrum, and so Theorem 4.3 applies. By the invariance of domain theorem, the image =ϕ(𝒜)italic-ϕ𝒜\mathcal{R}=\phi(\mathcal{A})caligraphic_R = italic_ϕ ( caligraphic_A ) is an open set in 𝒜𝒜\mathcal{A}caligraphic_A and ϕitalic-ϕ\phiitalic_ϕ is a homeomorphism onto \mathcal{R}caligraphic_R. Then ϕ1:𝒜:superscriptitalic-ϕ1𝒜\phi^{-1}:\mathcal{R}\to\mathcal{A}italic_ϕ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT : caligraphic_R → caligraphic_A enlarges the spectrum: σ(A)σ(ϕ1(A))𝜎𝐴𝜎superscriptitalic-ϕ1𝐴\sigma(A)\subseteq\sigma(\phi^{-1}(A))italic_σ ( italic_A ) ⊆ italic_σ ( italic_ϕ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_A ) ). By Lemma 4.1 the characteristic polynomial is being preserved and hence, ϕitalic-ϕ\phiitalic_ϕ preserves the spectrum.∎

5. Counterexamples

We show the optimality of Theorem 1.4 via counterexamples. In short, all assumptions except injectivity are indispensable for all block upper-triangular algebras except Mnsubscript𝑀𝑛M_{n}italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, while injectivity is superfluous in the Mnsubscript𝑀𝑛M_{n}italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT case and necessary in all other cases. The necessity of n3𝑛3n\geq 3italic_n ≥ 3 is shown by examples from [29, Example 7] and [28, Theorem 4]. Therefore we assume n3𝑛3n\geq 3italic_n ≥ 3 and let 𝒜Mn𝒜subscript𝑀𝑛\mathcal{A}\subseteq M_{n}caligraphic_A ⊆ italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT be an arbitrary block upper-triangular algebra not equal to Mnsubscript𝑀𝑛M_{n}italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT.

Example 5.1 (Injectivity, continuity and commutativity preserving is not enough).

Let D𝐷Ditalic_D be the open unit disk in {\mathbb{C}}blackboard_C. Define a map g:DD:𝑔𝐷𝐷g:D\to Ditalic_g : italic_D → italic_D by

g(z)=13z3z.𝑔𝑧13𝑧3𝑧g(z)=\frac{1-3z}{3-z}.italic_g ( italic_z ) = divide start_ARG 1 - 3 italic_z end_ARG start_ARG 3 - italic_z end_ARG .

It is easy to check that g𝑔gitalic_g is a holomorphic bijection (actually, it is an involution). Consider the map ϕ:𝒜Mn:italic-ϕ𝒜subscript𝑀𝑛\phi:\mathcal{A}\to M_{n}italic_ϕ : caligraphic_A → italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT given by

ϕ(X)=g(X1+X),italic-ϕ𝑋𝑔𝑋1norm𝑋\phi(X)=g\left(\frac{X}{1+{\left\|X\right\|}}\right),italic_ϕ ( italic_X ) = italic_g ( divide start_ARG italic_X end_ARG start_ARG 1 + ∥ italic_X ∥ end_ARG ) ,

where {\left\|\cdot\right\|}∥ ⋅ ∥ denotes the spectral norm. The map ϕitalic-ϕ\phiitalic_ϕ is well-defined, as for each X𝒜𝑋𝒜X\in\mathcal{A}italic_X ∈ caligraphic_A the matrix X1+X𝑋1norm𝑋\frac{X}{1+{\left\|X\right\|}}divide start_ARG italic_X end_ARG start_ARG 1 + ∥ italic_X ∥ end_ARG has norm <1absent1<1< 1 and hence its spectrum is contained in D𝐷Ditalic_D at which point we can apply g𝑔gitalic_g using the holomorphic functional calculus. Using the properties of the holomorphic functional calculus, we conclude that ϕitalic-ϕ\phiitalic_ϕ is continuous and preserves commutativity. Moreover, since the map XX1+Xmaps-to𝑋𝑋1norm𝑋X\mapsto\frac{X}{1+{\left\|X\right\|}}italic_X ↦ divide start_ARG italic_X end_ARG start_ARG 1 + ∥ italic_X ∥ end_ARG is injective, via the application of g1=gsuperscript𝑔1𝑔g^{-1}=gitalic_g start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = italic_g we conclude that ϕitalic-ϕ\phiitalic_ϕ is injective. However, ϕitalic-ϕ\phiitalic_ϕ is clearly not linear as

ϕ(0)=g(0)=13I.italic-ϕ0𝑔013𝐼\phi(0)=g(0)=\frac{1}{3}I.italic_ϕ ( 0 ) = italic_g ( 0 ) = divide start_ARG 1 end_ARG start_ARG 3 end_ARG italic_I .
Example 5.2 (Commutativity preserving is necessary).

Consider the map f:MnMn×:𝑓subscript𝑀𝑛superscriptsubscript𝑀𝑛f:M_{n}\to M_{n}^{\times}italic_f : italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT → italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT given by

f(X)=diag(edetX,1,,1).𝑓𝑋diagsuperscript𝑒𝑋11f(X)=\operatorname{diag}(e^{\det X},1,\ldots,1).italic_f ( italic_X ) = roman_diag ( italic_e start_POSTSUPERSCRIPT roman_det italic_X end_POSTSUPERSCRIPT , 1 , … , 1 ) .

Then the map ϕ:𝒜Mn:italic-ϕ𝒜subscript𝑀𝑛\phi:\mathcal{A}\to M_{n}italic_ϕ : caligraphic_A → italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT given by

ϕ(X)=f(X)Xf(X)1italic-ϕ𝑋𝑓𝑋𝑋𝑓superscript𝑋1\phi(X)=f(X)Xf(X)^{-1}italic_ϕ ( italic_X ) = italic_f ( italic_X ) italic_X italic_f ( italic_X ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT

is clearly continuous and preserves the spectrum. Moreover, since f𝑓fitalic_f is a similarity invariant and ϕ(X)italic-ϕ𝑋\phi(X)italic_ϕ ( italic_X ) is similar to X𝑋Xitalic_X, we can see that ϕitalic-ϕ\phiitalic_ϕ is bijective with the inverse Yf(Y)1Yf(Y)maps-to𝑌𝑓superscript𝑌1𝑌𝑓𝑌Y\mapsto f(Y)^{-1}Yf(Y)italic_Y ↦ italic_f ( italic_Y ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_Y italic_f ( italic_Y ). However, ϕitalic-ϕ\phiitalic_ϕ is not linear:

ϕ(I+E12)=I+eE12I+E12=ϕ(I)+ϕ(E12).italic-ϕ𝐼subscript𝐸12𝐼𝑒subscript𝐸12𝐼subscript𝐸12italic-ϕ𝐼italic-ϕsubscript𝐸12\phi(I+E_{12})=I+eE_{12}\neq I+E_{12}=\phi(I)+\phi(E_{12}).italic_ϕ ( italic_I + italic_E start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ) = italic_I + italic_e italic_E start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ≠ italic_I + italic_E start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT = italic_ϕ ( italic_I ) + italic_ϕ ( italic_E start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ) .
Example 5.3 (Continuity is necessary).

As in [29], consider the map ϕ:𝒜Mn:italic-ϕ𝒜subscript𝑀𝑛\phi:\mathcal{A}\to M_{n}italic_ϕ : caligraphic_A → italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT given by

ϕ(X)={diag(λ2,λ1,,λn),ifX=diag(λ1,,λn)and allλiare distinct,X,otherwiseitalic-ϕ𝑋casesdiagsubscript𝜆2subscript𝜆1subscript𝜆𝑛if𝑋diagsubscript𝜆1subscript𝜆𝑛and allλiare distinct,𝑋otherwise\phi(X)=\begin{cases}\operatorname{diag}(\lambda_{2},\lambda_{1},\ldots,%\lambda_{n}),\quad&\text{ if }X=\operatorname{diag}(\lambda_{1},\ldots,\lambda%_{n})\text{ and all $\lambda_{i}$ are distinct,}\\X,&\text{ otherwise}\end{cases}italic_ϕ ( italic_X ) = { start_ROW start_CELL roman_diag ( italic_λ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_λ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_λ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) , end_CELL start_CELL if italic_X = roman_diag ( italic_λ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_λ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) and all italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT are distinct, end_CELL end_ROW start_ROW start_CELL italic_X , end_CELL start_CELL otherwise end_CELL end_ROW

which is bijective, spectrum and commutativity preserving but clearly not continuous.

Example 5.4 (Injectivity is necessary).

Consider the map ϕ:𝒜Mn:italic-ϕ𝒜subscript𝑀𝑛\phi:\mathcal{A}\to M_{n}italic_ϕ : caligraphic_A → italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT given by

ϕ([X11X12X1n0X22X2n00Xrr])=[X11000X22000Xrr].italic-ϕmatrixsubscript𝑋11subscript𝑋12subscript𝑋1𝑛0subscript𝑋22subscript𝑋2𝑛00subscript𝑋𝑟𝑟matrixsubscript𝑋11000subscript𝑋22000subscript𝑋𝑟𝑟\phi\left(\begin{bmatrix}X_{11}&X_{12}&\cdots&X_{1n}\\0&X_{22}&\cdots&X_{2n}\\\vdots&\vdots&\ddots&\vdots\\0&0&\cdots&X_{rr}\end{bmatrix}\right)=\begin{bmatrix}X_{11}&0&\cdots&0\\0&X_{22}&\cdots&0\\\vdots&\vdots&\ddots&\vdots\\0&0&\cdots&X_{rr}\end{bmatrix}.italic_ϕ ( [ start_ARG start_ROW start_CELL italic_X start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT end_CELL start_CELL italic_X start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT end_CELL start_CELL ⋯ end_CELL start_CELL italic_X start_POSTSUBSCRIPT 1 italic_n end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL italic_X start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT end_CELL start_CELL ⋯ end_CELL start_CELL italic_X start_POSTSUBSCRIPT 2 italic_n end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL ⋮ end_CELL start_CELL ⋮ end_CELL start_CELL ⋱ end_CELL start_CELL ⋮ end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL ⋯ end_CELL start_CELL italic_X start_POSTSUBSCRIPT italic_r italic_r end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ] ) = [ start_ARG start_ROW start_CELL italic_X start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT end_CELL start_CELL 0 end_CELL start_CELL ⋯ end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL italic_X start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT end_CELL start_CELL ⋯ end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL ⋮ end_CELL start_CELL ⋮ end_CELL start_CELL ⋱ end_CELL start_CELL ⋮ end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL ⋯ end_CELL start_CELL italic_X start_POSTSUBSCRIPT italic_r italic_r end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ] .

Then ϕitalic-ϕ\phiitalic_ϕ is clearly a unital Jordan hom*omorphism (and hence satisfies all assumptions of Theorem 1.4), but is not injective.

References

  • [1] A.L.Agore, The maximal dimension of unital subalgebras of the matrix algebra, Forum Math.29 (2017), no.1, 1–5.
  • [2] M.Akkurt, E.Akkurt, G.P.Barker, Automorphisms of structural matrix algebras, Oper.Matrices 7 (2013), no.2, 431–439.
  • [3] M.Akkurt, E.Akkurt, G.P.Barker, Jordan hom*omorphisms of the structural matrix algebras, Linear Multilinear Algebra 63 (2015), no.12, 2518–2525.
  • [4] K.I.Beidar, M.Brešar, M.A.Chebotar, Jordan isomorphisms of triangular matrix algebras over a connected commutative ring, Linear Algebra Appl.312 (2000), no.1–3, 197–201.
  • [5] D.Benkovič, Jordan hom*omorphisms on triangular matrices, Linear Multilinear Algebra 53 (2005), no.5, 345–356.
  • [6] C.Boboc, S.Dăscălescu, L.van Wyk, Jordan isomorphisms of 2-torsionfree triangular rings, Linear Multilinear Algebra 64 (2016), no.2, 290–296.
  • [7] M.Brešar, P.Šemrl, An extension of the Gleason–Kahane–Żelazko theorem: A possible approach to Kaplansky’s problem, Expo. Math. 26(3) (2008) 269–277.
  • [8] R.Brusamarello, E.Z.Fornaroli, M.Khrypchenko, Jordan isomorphisms of finitary incidence algebras, Linear Multilinear Algebra 66 (2018), no.3, 565–579.
  • [9] R.Brusamarello, E.Z.Fornaroli, M.Khrypchenko, Jordan isomorphisms of the finitary incidence ring of a partially ordered category, Colloq.Math.159 (2020), no.2, 285–307.
  • [10] C.Chen, F.Lu, L.Chen, Jordan epimorphisms of nest algebras, J.Math.Anal.Appl.494 (2021), no.2, Paper No.124571, 9 pp.
  • [11] W.S.Cheung, C.K.Li, Linear operators preserving generalized numerical ranges and radii on certain triangular algebras of matrices, Canad.Math.Bull.44 (2001), no.3, 270–281.
  • [12] W.L.Chooi, M.H.Lim, Linear preservers ontriangular matrices, Linear Algebra Appl.269 (1998), 241–255.
  • [13] W.L.Chooi, M.H.Lim, P.Šemrl, Adjacency preserving maps on upper triangular matrix algebras, Linear Algebra Appl. 367 (2003), no.7–8, 105–130.
  • [14] J.Cui, J.Hou, B.Li, Linear preservers on upper triangular operator matrix algebras, Linear Algebra Appl.336 (2001), 29–50.
  • [15] Y.Du, Y.Wang, Jordan hom*omorphisms of upper triangular matrix rings over a prime ring, Linear Algebra Appl.458 (2014), 197–206.
  • [16] A.Fošner, Ohranjevalci na Banachovih algebrah, monograph, Koper: Fakulteta za management, 2009, https://www.fm-kp.si/zalozba/ISBN/978-961-266-039-0.pdf
  • [17] I.N.Herstein, Jordan hom*omorphisms, Trans.Amer.Math.Soc.81 (1956), 331–341.
  • [18] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press, 2018.
  • [19] L.P.Huang, Adjacency preserving bijective maps on triangular matrices over any division ring, Linear Multilinear Algebra 58 (2010), no.7–8, 815–846.
  • [20] N.Jacobson, C.E.Rickart, Jordan hom*omorphisms of rings, Trans.Amer.Math.Soc.69 (1950), 479–502.
  • [21] P.Jordan, Über Verallgemeinerungsmöglichkeiten des Formalismus der Quantenmechanik, Nachr.Akad.Wiss.Göttingen.Math.Phys.Kl.I, 41 (1933), 209–217
  • [22] I.Kaplansky, Algebraic and analytic aspects of operator algebras, Amer. Math. Soc. (1970), Providence.
  • [23] C.K.Li, S.Pierce, Linear preserver problems, Amer.Math.Monthly 108 (2001), no.7, 591–605.
  • [24] C.K.Li, P.Šemrl, G.Soares, Linear operators preserving the numerical range (radius) on triangular matrices, Linear Multilinear Algebra 48 (2001), no.4, 281–292.
  • [25] C.K.Liu, W.Y.Tsai, Jordan isomorphisms of upper triangular matrix rings, Linear Algebra Appl.426 (2007), no.1, 143–148.
  • [26] F.Lu, Jordan isomorphisms of nest algebras, Proc.Amer.Math.Soc.131 (2003), no.1, 147–154.
  • [27] L.Molnár, P.Šemrl, Some linear preserver problems on upper triangular matrices, Linear Multilinear Algebra 45 (1998), 189–206.
  • [28] T.Petek, Spectrum and commutativity preserving mappings on triangular matrices, Linear Algebra Appl.357 (2002), 107–122.
  • [29] T.Petek, P.Šemrl, Characterization of Jordan hom*omorphisms on Mnsubscript𝑀𝑛M_{n}italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT using preserving properties,Linear Algebra Appl.269 (1998), 33–46.
  • [30] P.Šemrl, Characterizing Jordan automorphisms ofmatrix algebras through preserving properties, Oper.Matrices 2 (2008), no.1, 125–136.
  • [31] P.Šemrl, Maps on matrix spaces, Linear Algebra Appl.413 (2006) no.2, 364–393
  • [32] M.F.Smiley, Jordan hom*omorphisms onto prime rings, Trans.Amer.Math.Soc.84 (1957), 426–429.
  • [33] M.Tomašević, A nonlinear preserver problem on positive matrices, Linear Algebra Appl.666 (2023), 96–113.
  • [34] D.Wang, H.Pan, X.Wang, Non-linear maps preserving ideals on a parabolic subalgebra of a simple algebra, Czechoslovak Math.J.60(135) (2010), no.2, 371–379.
  • [35] Y.Wang, Y.Wang, Jordan hom*omorphisms of upper triangular matrix rings, Linear Algebra Appl.439 (2013), no.12, 4063–4069.
  • [36] T.L.Wong, Jordan isomorphisms of triangular rings, Proc.Amer.Math.Soc.133 (2005), no.11, 3381–3388.
  • [37] Y.Zhao, D.Wang, X.Wang, Maps preserving square-zero matrices on the algebra consisting of all upper triangular matrices, Linear Multilinear Algebra 58 (2010), no.1–2, 121–136.
Characterizing Jordan embeddings between block upper-triangular subalgebras via preserving properties (2024)
Top Articles
Latest Posts
Article information

Author: Aron Pacocha

Last Updated:

Views: 6048

Rating: 4.8 / 5 (68 voted)

Reviews: 83% of readers found this page helpful

Author information

Name: Aron Pacocha

Birthday: 1999-08-12

Address: 3808 Moen Corner, Gorczanyport, FL 67364-2074

Phone: +393457723392

Job: Retail Consultant

Hobby: Jewelry making, Cooking, Gaming, Reading, Juggling, Cabaret, Origami

Introduction: My name is Aron Pacocha, I am a happy, tasty, innocent, proud, talented, courageous, magnificent person who loves writing and wants to share my knowledge and understanding with you.